TOPICS

*Cyanidioschyzon merolae*における 亜硝酸を選択的に還元する新規亜硫酸還元酵素^{\$}

¹東京大学教養学部教養教育高度化機構生命科学高度化部門
 ²大阪大学蛋白質研究所
 ³東京大学大学院総合文化研究科広域科学専攻生命環境科学系
 関根康介^{1,*}、榊原由希子²、長谷俊治²、佐藤直樹³

1.はじめに

酸素発生型光合成生物が行う硝酸同化と硫酸同化の 中間反応に、それぞれ亜硝酸をアンモニアに亜硫酸を 硫化物に還元する反応がある。亜硝酸還元酵素 (NiR)と亜硫酸還元酵素(SiR)がそれらの反応を 担っているが、この二つの酵素は構造学的にも機能的 にも類似点が多い¹⁻³⁾(図1)。例えば、補欠分子族と して[4Fe-4S]クラスターとシロヘムを1個ずつもち、 シアノバクテリアではサイトゾル、真核光合成生物で は葉緑体ストロマに局在し、フェレドキシンを介して 光化学系Iから電子を受け取り、1個の基質の酵素反応 に6電子が必要であることなどが挙げられる⁴⁾。よく 似た酵素ではあるが、基質特異性が異なり、それぞれ 生理的な基質に対して高い触媒活性を示し、明確に区 別できる⁵⁾。しかしながら、NiRとSiRの基質特異性の 違いを決めている機構ははっきりと理解されていな

ソウNiRとトウモロコシSiRの立体構造モデル

§ 第1回日本光合成学会シンポジウム ポスター賞受賞論文

6,00

Cyanidioschyzon merolae は、酸性温泉に生息する単 細胞性の紅藻である。C. merolae は2004年にゲノム情 報が公開された⁶⁾。その中から、NiRとSiRについて相 同検索すると、2個のSiR相同タンパク質をコードする 遺伝子が見つかる。ところが驚くべきことにNiRの相 同タンパク質をコードする遺伝子が見つからなかっ た。C. merolae は硝酸を唯一の窒素源とする培地でも 生育することから、亜硝酸を還元する酵素が存在しな いというのは考えにくく、おそらく類似酵素である SiRがNiRの役割を果たしていると考えられる。

本稿では、C. merolaeがもつ新しい基質特異性をも つSiRについての生化学的解析の結果と、それがC. merolaeにおいて亜硝酸還元を担いうる酵素であるこ とを検討した結果を紹介する。

2. NiR候補探索

C. merolae のゲノム塩基配列上には、SiR相同遺伝子 CmSiRA (CMJ117C) と CmSiRB (CMG021C) が存在する が、NiR相同遺伝子は存在しない。一般的にフェレド キシン依存性SiRは弱い亜硝酸還元活性をもつことか ら、CmSiRA と CmSiRB のどちらかが NiR の役割を 果たしている可能性がある。しかしながら、CmSiRA とBのアミノ酸配列の類似性は70%と高く、光合成生 物のNiRおよびSiRのアミノ酸配列をもとにした分子 系統解析の結果 (図2) からは C. merolae の2個の SiR は、明らかにSiRのグループに属する。したがって、 一次構造の情報からどちらがNiRの役割を果たすのか を推定することは難しい。

^{*} 連絡先 E-mail: co-suke@csls.c.u-tokyo.ac.jp

3. CmSiRBの酵素活性測 定法

CmSiRBが高い亜硝酸還 元活性をもつかどうかを確 かめるために、組換えタン パク質を調製し、反応速度 論的解析を行った。組換え タンパク質は大腸菌発現系 を用い、また、SiRの活性 に必要な補欠分子族である シロヘムの不足を補うため に、大腸菌シロヘム合成酵 素を大量共発現させる方法 を用いた⁷⁾。

NiRやSiRの酵素活性を測 定する方法として、酵素に 電子を供給するためにフェ レドキシンを加える。フェ レドキシンの還元剤とし て、当初ジチオナイト (Na₂S₂O₄)を用いたが⁸⁾、 この方法では酵素活性を測 定することができなかっ た。フェレドキシンを還元 する別の方法として、フェ レドキシン-NADP(H)酸化 還元酵素 (FNR)と NADPHを加えることで、 NADPH→FNR→フェレド キシンという電子の流れを

図2 酸素発生型光合成生物のNiRとSiRのアミノ酸配列をもとにした分子系統樹 系統樹はベイズ法による推定に基づいて作製した。CmSiRAおよびCmSiRBの位置を星印で示 した。分岐群の信頼値が高い枝を太線で示した。分岐上の数字は、最尤法(ML)と近隣結合 法(NJ)によって求められた信頼度をパーセンテージで示している。

しかしながら、*CmSiRB*遺伝子は7番染色体上にあ り、すぐ下流には硝酸還元酵素と硝酸トランスポー ターという硝酸同化に関わるタンパク質をコードする 遺伝子が並んでいる。さらに、窒素源としてアンモニ アを含む培地と硝酸を含む培地で培養した細胞で、 CmSiRAとCmSiRBタンパク質の蓄積量を比較した。 その結果、CmSiRAでは、窒素源による変化は見られ なかったが、CmSiRBは、アンモニアを含む培地では タンパク質の蓄積はほとんど見られず、硝酸を含む培 地で蓄積が見られた(図3)。この結果は、CmSiRB が硝酸同化系に関与することを示唆しており、NiRの 役割を果たす最有力候補と考えた。

再現した⁹⁾。FNRは光合成条件下では、これとは逆に

光化学系Iから電子を受け取ったフェレドキシンに よって還元され、NADPHを生産する酵素として有名 であるが、非光合成条件下では逆反応が行われ(実際 には非光合成型のアイソザイムが働く)、FNRによっ てフェレドキシンが還元され、さまざまなフェレドキ シン依存性酵素に電子が分配されている⁹⁰。この方法 により、CmSiRBの酵素活性を測定することが可能に なった。また、還元剤としてジチオナイトが利用でき ない理由は、後述するCmSiRBの基質特異性によって 説明できる。さらに、FNRによって生成されたNADP+ は、グルコース-6-リン酸脱水素酵素とグルコース-6-リ ン酸によってNADPHに再還元し持続的に還元力を供 給するようにした。

NiRの酵素活性は、基質である 亜硝酸の減少量を測定すること で活性とし、SiRは、反応液にシ ステイン合成酵素とO-アセチル-L-セリンを加え、システインの蓄 積量を測定することで活性とし た。システイン合成酵素は、O-ア セチル-L-セリンとSiRの触媒産物 である硫化物を基質としてシステ インを合成する酵素である。

4. CmSiRBの基質特異性

CmSiRBの亜硫酸還元活性の反 応速度論的解析を行った(図 4A、表1)。比較のために一般的 なフェレドキシン依存性NiRおよ びSiRとして、それぞれシアノバ クテリア **Synechocystis** SD. PCC6803 NiR (SyNiR) とトウモ ロコシSiR (ZmSiR)を用いた。 CmSiRBの亜硫酸に対する Km 値 は 8.7 µM と低く親和性が高いこ とが示された。これはSiRとして は納得できる値である。しかし ながら、触媒中心活性(代謝回 転数)を示す kcat 値が ZmSiR と 比較して46分の1と極めて低かっ た。この値からCmSiRBがSiRとし ては生理的に機能していないと推 察される。

同様に亜硝酸を基質した場合の反応速度論的解析を 行った(図4B、表1)。CmSiRBの亜硝酸に対する K_m 値は、221 μ M と ZmSiR と比較すると約2分の1低い値 であるが、SyNiRと比較すると6倍と明らかに高く、 親和性は低いことが示された。しかし、触媒中心活性 は、SyNiRと比較すると約4分の1と低いものの、 ZmSiRと比較すると約4倍の高い値を示した。この結 果は、CmSiRBが *C. merolae* 細胞中でNiRの役割を果 たす可能性を強く示唆するものである。

ここで、反応液に亜硝酸とともに亜硫酸を加える と、亜硝酸還元活性の k_{cat} 値はほとんど変わらず、 K_m 値が918 μ Mに上昇した。このことは、亜硫酸が拮抗

 (A) CmSiRB、SyNiRおよびZmSiRの亜硫酸還元活性。
 (B) CmSiRB、SyNiRおよび ZmSiRの亜硝酸還元活性。添加した亜硫酸の濃度は250 µM。
 (C) C. merolae 細胞と Synechocystis 細胞による亜硝酸消費速度。添加した亜硫酸の濃度は250 µM。
 (D) CmSiRBの野生型と変異酵素STLCINの亜硫酸還元活性と亜硝酸還元活性。 表1 CmSiRB、ZmSiR、SyNiRおよびSTLCIN (CmSiRB変異酵素)の反応速度論的パラ 対する亜硫酸の影響とよく-メータ

独立した3回の実験の測定値から非線形重み付き最小二乗法により K_m 値と k_{cat} 値とそれぞれ の標準偏差を求めた。ハイフンは検出限界以下を表す。括弧内は250 μ Mの亜硫酸存在下で で CmSiRB が亜硝酸の消費に の値。 関与していることを強く示唆

	$K_{ m m}$ (μ M)		k_{cat} (mol product·mol enzyme-1·min-1)	
Substrates	NO ₂ -	SO ₃ ²⁻	NO ₂ -	SO3 ²⁻
CmSiRB	221 ± 36	8.7 ± 1.6	243 ± 13	4.7 ± 0.2
(+ sulfite)	(918 ± 203)	-	(244 ± 28)	-
ZmSiR	416 ± 92	74 ± 5.6	56 ± 5.2	216 ± 5.8
SyNiR	37 ± 6.3	-	1077 ± 53	-
STLCIN	95 ± 13	6.4 ± 0.5	106 ± 13	8.0 ± 0.2

対する亜硫酸の影響とよく一 致しており、*C. merolae* 細胞内 で CmSiRB が亜硝酸の消費に 関与していることを強く示唆 するものである。

CmSiRBの特性を決める 構造因子の探索

光合成生物のNiRおよびSiR のアミノ酸配列を比較する と、NiRとSiRのそれぞれでよ く保存されている部位のう ち、CmSiRBだけに特異的な6

的に阻害していることを示している。つまり、 CmSiRBが亜硫酸に対して強い親和性をもつ一方で、 代謝回転数が極端に低いため、亜硫酸が阻害剤になり 得、これはCmSiRBがもつ特性である。また、還元剤 として当初ジチオナイトを用いたときに酵素活性が測 定できなかった理由を考えると、ジチオナイトが酸化 分解されて生成する亜硫酸が阻害剤として作用したた めと考えられる。

5. 無傷細胞におけるCmSiRBの役割

C. merolae 細胞中において CmSiRB の特性が再現さ れるかを確かめた。まず、窒素源としてアンモニアを 含む培地と硝酸を含む培地で培養した C. merolae 細胞 の亜硝酸の消費速度を比較した。硝酸培地の細胞はア ンモニア培地の細胞に比べ、約3倍の速度で亜硝酸を 消費した。この結果は、CmSiRBが硝酸培地で生育し た細胞でのみ検出される結果(図3)とよく合致して いる。次に、硝酸培地で培養した C. merolae 細胞と Synechocystis 細胞による亜硫酸存在下での亜硝酸消費 量を測定し、見かけ上の反応速度論的パラメータを求 めた(図4C、表2)。Synechocystis 細胞では見かけの

 V_{max} と K_m ともに、亜硫酸の存 在による影響は見られなかっ たが、C. merolae 細胞では亜 硫酸の存在により V_{max} がわず かな減少にとどまるのに対 し、 K_m 値が34 μ M から 141 μ M に大きく増加した。この 結果は、*in vitro*実験系での CmSiRB の亜硝酸還元活性に 個のアミノ酸が集中している箇所が存在する(図 5)。CmSiRBのこの6個すべてのアミノ酸をSiRに保 存されているアミノ酸に置換した組換えタンパク質 (STLCIN)を作製し、基質特異性を調べた(図4D, 表1)。その結果、STLCINは野生型 CmSiRB に比 べ、亜硫酸に対して約2倍、亜硝酸に対して約2分の1 の触媒中心活性を示した。STLCINの活性は、基質に より野生型と比較して逆の変化を示すことから、この 6個のアミノ酸の全て、あるいは一部が基質の選択性 に関与していることが示唆された。

ZmSiRの結晶構造(データは未公表)からSTLCIN の変異部分に相当するアミノ酸は、基質結合部位を挟 んでシロヘムおよび[4Fe-4S]クラスターの反対側に位 置することから(図6)、CmSiRBのこれらのアミノ 酸が活性中心周辺の立体構造の形成に深く関与し、活 性中心への基質の結合や補欠分子族から基質への電子 の受け渡しの効率に影響を与えているのかもしれな い。

7.おわりに

CmSiRBは、分子系統解析上は明らかにSiRに属

図5 光合成生物のNiRおよびSiRのアミノ酸配列をもとにしたアラインメントの一部 NiRに保存されたアミノ酸を黄色、SiRに保存されたアミノ酸を水色、両方に保存されたア ミノ酸を緑色のボックスで示した。他種のSiRとNiRでそれぞれよく保存されているが、 CmSiRBで特異的である6個のアミノ酸を赤色のボックスで示した。

図6 ZmSiRの立体構造モデル

左側は全体像で、シロヘムを赤色、[4Fe-4S]クラスターをピンク、CmSiRB特異的な6個のア ミノ酸に相当するアミノ酸を緑色で表した。右側は活性中心付近を拡大して、補欠分子族 と6個のアミノ酸のみを表示し、基質結合部位を示した。

し、反応速度論的にもSiRの特徴を強く残している。 しかし、既知のSiRとは2種類の基質に対する優位性

が決定的に異なる。つまり、CmSiRBは構造上のわず かな変化によってSiRからNiRに機能的に進化したユ ニークな酵素であると考えられる。系統樹(図2)を 見ると、光合成生物のNiRとSiRは、真核生物が現れ る以前に、どちらかの(あるいは全く別の)酵素から 分岐したと考えられるが、CmSiRBの機能的分岐は、 それとは別の進化であると考えるべきである。しかし ながら、このユニークな基質特異性をもつCmSiRB は、未だ解明されていないNiRとSiRの基質特異性決 定機構を解明するための絶好の材料と考えている。本 報告で示したCmSiRBの基質特異性に興味深い変化を もたらした6個のアミノ酸を中心に、現在更なる構造

表2 C. merolae 細胞と Synechocystis 細胞による亜硝酸消費 の見かけ上の反応速度論的パラメータ

独立した3回の実験の測定値から非線形重み付き最小二乗法 によりKm値とkcat値とそれぞれの標準偏差を求めた。括弧内 は250 µMの亜硫酸存在下での値。

	Apparent $K_{\rm m}$	Apparent V_{max}
	(µM)	$(\mu \mathbf{M} \cdot \min^{-1})$
C. merolae	34 ± 4.0	0.98 ± 0.037
(+ sulfite)	(141 ± 29)	(0.84 ± 0.082)
Synechocystis	11 ± 4.3	0.45 ± 0.052
(+ sulfite)	(11 ± 4.8)	(0.49 ± 0.061)

されれば、C. merolae における硝酸同化機構の全容が つかめるものと期待される。

謝辞

本研究は、大阪大学蛋白質研究所共同研究員制度を 利用して行われた。また、2009年度日本科学協会笹川 科学研究助成の支援を受けて行われた。

Received July 15, 2011, Accepted July 21, 2011, Published August 31, 2011

参考文献

- 1. Crane, B. R., and Getzoff, E. D. (1996) The relationship between structure and function for the sulfite reductases, Curr. Opin. Struct. Biol. 6, 744-756
- 2. Moreno-Vivián, C, Ferguson, S. J. (1998) Definition and distinction between assimilatory, dissimilatory and respiratory pathways, Mol. Microbiol. 29, 664-666
- 3. Simon, J. (2002) Enzymology and bioenergetics of respiratory nitrite ammonification, FEMS Microbiol. Rev. 26, 285-309
- 4. Nakayama, M., Akashi, T. and Hase, T. (2000) Plant sulfite reductase: molecular structure, catalytic function and interaction with ferredoxin, J. Inorg. Biochem. 82, 27-32
- 5. Krueger, R. J., and Siegel, L. M. (1982) Spinach siroheme enzymes: isolation and characterization of ferredoxin-sulfite reductase and comparison of properties with ferredoxin-nitrite reductas.

学的な解析を進めている。

本研究成果の一部は、 2009年の原著論文10)で発表 し、CmSiRB か C. merolae に おける NiR としての役割を 果たす生化学的な証拠を示 した。これに加え、2010年 に Imamura 等¹¹⁾によって、 CmSiRB 遺伝子が NiR 遺伝子 欠損シアノバクテリアの障害 を相補することや、CmSiRB 遺伝子欠損 C. merolae が硝酸 培地で増殖が遅くなること などが報告された。この事 実は、我々の提言を遺伝学 的に支持するものである。 今後、CmSiRAの特徴が理解

Biochemistry 21, 2892-2904

- Matsuzaki, M., Misumi, O., Shin-i, T., Maruyama, S., Takahara, M., Miyagishima, S-Y., Mori, T., Nishida, K., Yagisawa. F., Nishida, K., Yoshida, Y., Nishimura, Y., Nakao, S., Kobayashi, T., Momoyama, Y., Higashiyama, T., Minoda, A., Sano, M., Nomoto, H., Oishi, K., Hayashi, H., Ohta, F., Nishizaka, S., Haga, S., Miura, S., Morishita, T., Kabeya, Y., Terasawa, K., Suzuki, Y., Ishii, Y., Asakawa, S., Takano, H., Ohta, N., Kuroiwa, H., Tanaka, K., Shimizu, N., Sugano, S., Sato, N., Nozaki, H., Ogasawara, N., Kohara, Y., and Kuroiwa, T. (2004) Genome sequence of the ultrasmall unicellular red alga *Cyanidioschyzon merolae* 10D, *Nature* 428, 653-657
- Ideguchi, T., Akashi, T., Onda, Y. and Hase, T. (1995) cDNA cloning and functional expression of ferredoxindependent sulfite reductase from maize in *E. coli* cells, in *Photosynthesis: from Light to Biosphere, Vol II* (Mathis, P., ed.) pp. 713–716. Kluwer Academic Publishers, Dordrecht
- 8. von Arb, C., and Brunold, C. (1983) Measurement of ferredoxin-dependent sulfite reductase activity in crude

extracts from leaves using *O*-acetyl-L-serine sulfhydrylase in a coupled assay system to measure the sulfide formed, *Anal. Biochem. 131*, 198-204

- Yonekura-Sakakibara, K., Onda, Y., Ashikari, T, Tanaka, Y., Kusumi, T., and Hase, T. (2000) Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and nonphotosynthetic organs of maize, *Plant Physiol. 122*, 887-894
- Sekine, K., Sakakibara, Y., Hase, T., and Sato, N. (2009) A novel variant of ferredoxin-dependent sulfite reductase having preferred substrate specificity for nitrite in *Cyanidioschyzon merolae*, *Biochem. J.* 423, 91-98
- 11. Imamura, S., Terashita, M., Ohnuma, M., Maruyama, S., Minoda, A., Weber, A.P., Inouye, T., Sekine, Y., Fujita, Y., Omata, T., and Tanaka, K. (2010) Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga *Cyanidioschyzon merolae*: genetic evidence for nitrite reduction by a sulfite reductase-like enzyme, *Plant Cell Physiol.* 51, 707-717.

A novel variant of sulfite reductase preferentially reducing nitrite in *Cyanidioschyzon merolae*

Kohsuke Sekine^{1,*}, Yukiko Sakakibara², Toshiharu Hase², Naoki Sato³

¹Division of Life Sciences, Komaba Organization for Educational Excellence,

College of Arts and Sciences, the University of Tokyo

²Institute for Protein Research, Osaka University

³Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo