解説

不安定なタンパク質を見る

1. はじめに

タンパク質の機能や性質を理解する上で、その立体 構造情報は極めて重要で、必須ともいえる。このこと は光合成分野に限らず、生物科学の広い分野に共通し ていえることであろう。立体構造をみることにX線結 晶解析が果たしている役割が非常に大きいことに異論 はないであろう。

ところで、タンパク質を代表とする生体巨大分子や 複合体の立体構造は静止していない。「機能する」と いうことは、他の分子と相互作用し、構造変化をして いることに他ならない。X線結晶解析がなされると確 かに「ある状態の構造」がみえるが、タンパク質分子 がどのように構造変化し、これが機能とどう結びつく かを理解したいという欲求がさらに生ずるのも自然 な流れである。このようなことにX線結晶解析法でど こまで迫れるのか、どのようなことをクリアーすれば 達成できるかをここで述べてみたい。

2. X線結晶解析で何がみえているのか?

X線結晶解析は、調製した結晶にX線を照射し、そ こから散乱(回折)されるX線を記録し、この回折 データから原子位置などの構造情報を得る方法であ る。この方法は、構造決定しようとしている分子が結 晶状態であることを前提にして、理論が組み立てられ ている。結晶とは、同一の立体構造をとった分子が 周期的に配列したものである。X線結晶解析で直接み えるものは「空間的および時間的平均」の電子密度 である。結晶中の分子配列に乱れが無く、実験中に 構造変化しなければ、この方法は分子を構成する各 原子の位置を極めて正確に(誤差が0.01 Å以下の精度 で)決定できる。タンパク質のような巨大分子でも、 最もみえにくいとされる水素原子をもみることがで きる。しかし反面、局所的にせよコンフォメーション

大阪大学・大学院理学研究科 福山恵一*

が多様であったり、経時的に構造変化すると、該当 領域の電子密度はぼやけ、ひどくなると電子密度が全 くみえなくなる。

一般に、タンパク質分子は溶液中でも結晶中でも構 造がゆらいでおり、さらに基質等の小分子や他のタ ンパク質やDNAと相互作用すると、大きな構造変化 が起こるのが普通である。それではX線結晶解析とい う方法で、どのようにしてタンパク質の構造をみれば いいか、動きを捉えられるのか、またこの方法から 得られた結果をどう評価したらいいかについて概説 する。

3. 例1:化学的に不安定な分子をみる1.2)

この種の分子の構造をX線結晶解析でみる場合、結 晶を構成する分子を立体的に均一にし、回折実験中 不変に保つことが必要である。つまり、変化しやす い分子を「どの状態に揃えるか」がポイントになる。 ここでは、不安定な鉄硫黄(FeS)クラスターを保持 したIscUタンパク質を例にあげ、どのようにして立体 構造をみることができたか、そしてこの構造から得ら れた知見の科学的評価を述べる。

FeSクラスター形成やFeSタンパク質の成熟化には タンパク質群が関与しており、その一つがISCマシナ リーである(図1A)³⁾。IscUはISCマシナリーの必須 の成分であり、他の成分タンパク質と協調的に働 き、FeSタンパク質をアポ型からホロ型へと成熟化さ せる。FeSクラスターには[2Fe-2S]や[4Fe-4S]等がある が、ISCマシナリーはどのタイプのクラスターにも対 応するという特徴がある。これまでの分子遺伝学や 生化学的解析から、IscU中でFeSクラスターが一時的 に形成され、これがアポ型FeSタンパク質に渡される とされている。このような機能から容易に想像がつく ように、IscUは様々な状態をとり、構造(状態)変化

^{*} 連絡先 E-mail: fukuyama@bio.sci.osaka-u.ac.jp

図1. ISCマシナリーとその成分タンパク質IscUの構造

(A) 大腸菌ではiscSUAhscBAfdxはオペロンをなし、対応するタンパク質が協調的に働くことによってFeSタンパク質がホロ型に なる。IscUはscaffoldタンパク質である。成分間に引いた線は様々な方法で検出された相互作用を示す。(B) [2Fe-2S]クラスター を結合したIscU (D38A変異体)の非対称な三量体構造。同一のポリペプチドでありながら互いに異なるコンフォメーションを とり、一つのサブユニットのみがFeSクラスターを結合している。(C) [2Fe-2S]クラスター近傍の構造。緑がBサブユニット、赤 がAサブユニットを示す。Cys36とHis106が一方の鉄原子に、Cys63とCys107が他方の鉄原子に結合している。BとCは文献2より 転載。

しやすいが故に「機能的」であるといえる。我々は FeSクラスターを保持した状態のIscU(FeS-IscU)の 構造をみることがIscUの分子機構解明の第一歩である と位置づけ、この構造を捉えることに焦点をあてた。 それまでの経験から大腸菌FeS-IscUはきわめて不安定 であったので、以下のように順次取り組んだ。

 1)幾つかの生物種について、安定なFeS-IscUをスク リーニングし、Aquifex aeolicus 由来のIscUを選択した。

2)このIscUを大腸菌で発現させるとFeSクラスター特 有の色を持つタンパク質が生成した。嫌気的条件下で 操作すると、このFeSタンパク質が精製できたが、か なりの割合でFeSが分解しているようであった。

3)さらに安定化させるため、Azotobacter vinelandii の IscUに倣って、A. aeolicus のIscUにD38Aという変異を 導入した。この結果、このFeS-IscUはより安定にな り、嫌気チャンバー内で操作することにより精製と結 晶化に成功した。この結晶は、大気中ですばやく急 速凍結すれば、その後は通常の結晶と同様に扱って も長期間安定であった。

本X線結晶解析から、予期していなかった構造が現 れた。それまではIscUの二量体の中央でFeSが形成さ れると考えられていたが、FeS-IscUは非対称な三量体 を形成し、一つのサブユニットの表面にFeSが結合 し、残る二つのサブユニットはFeSを持たずに、別の サブユニットが持つFeSを覆っていた(図1B)。す なわち、一つはFeS形成の場を提供し、残る二つは異 なるコンフォメーションをとってFeSの保護や転移に 寄与しているように見え、同じポリペプチドでありな がらそれぞれのサブユニットは異なる役割を果たして いると考えられた。詳細は省略するが、IscUの生化学 的解析と合わせて、IscUはオリゴマー状態を変えて FeSを形成・転移させているという、新しい分子機構 を提唱した。

図1CにFeSクラスター近傍の構造を示したよう に、FeSには3つのCys残基と一つのHis残基が配位し ている。これらの残基に加えて、Asp38(ここでは D38A変異体なのでAla38となっている)をはじめFeS クラスターを結合しうるアミノ酸残基が近くに点在す る(図1C中赤破線)。IscUの機能から、FeSがIscU に結合する様式は幾つかあり、形成された(されつ つある)FeSクラスターはIscUの中で順次移動して、 最終的にターゲットとなるアポ型FeSタンパク質に渡 るのであろう。D38Aは形成されたFeSクラスターが 固定される変異体で、このため安定になったと解釈 できる。事実、この変異によりIscUの機能が損なわれ る。本解析では、機能しているIscUの一つのスナップ を捉えたと考えている。

IscUに限らず、タンパク質が働く様を動画としてみ たいのであれば、各状態の構造を捉え、これらを繋 ぐ必要がある。映画の場合と同じである。

4. 例2-1:酵素反応の中間体を捉える4)

図2Aに示すように、γ-グルタミルトランスペプチ ダーゼ (GGT) は2段階で、基質中のγ-グルタミル基 を加水分解・転移する反応を触媒する⁵⁾。一般に、2

図2.GGTの反応と構造

(A) GGTの2段階反応。一段階目の反応後に、GGTの活性残基(Thr)と基質に由来するγ-グルタミル基が結合したγ-グルタミ ル酵素中間体が生成する。(B)2段階反応における3状態の構成比率の経時変化。(C)大腸菌GGTの立体構造。中央(赤丸)に 活性残基Thr391がある。緑:L-サブユニット、青:S-サブユニット。(D)GGT結晶を基質溶液に一定時間ソーキングした後の電 子密度。

段階反応の場合、反応前、中間体、反応後にある状態の構成比の経時的変化は図2Bのようになる。X線結晶解析では、時間的・空間的平均の電子密度がみえるのであるから、回折測定に供する結晶中の分子種(の大多数)をいずれかの状態に揃えれば、それがみえることになる。

よく知られているように、タンパク質結晶はかなり の割合で水を含んでおり、タンパク質分子間には小分 子やイオンが浸透できる水路がはり巡らされているよ うなものである。酵素結晶を低分子基質の溶液に浸 せば、もし反応部位が水路に面していれば結晶中で反 応が起こり、これによって結晶を壊すような構造変化 がなければ、X線結晶解析できる。

ここでは大腸菌由来GGT結晶を、基質であるグル タチオンの溶液に様々な時間浸し、それぞれの結晶 を急速凍結して反応を停止させた。それぞれの結晶に ついて回折データを収集し、構造解析したところ、約 10秒間グルタチオン溶液に浸した場合に、活性残基 Thr391のOy原子にγ-グルタミル基がエステル結合でつ

ながっている電子密度がみえた(図2C,D)。すなわ ち、γ-グルタミル-酵素中間体を捉えたといえ、どの ようにy-グルタミル基がGGTに認識されているかが明 らかになった。なお、本解析より前に、ヒトGGTで 機能が損なわれる変異体が幾つか報告されていたが、 ここで指摘されていたアミノ酸残基はα位のアミノ基 とカルボキシル基を認識している残基であった。本構 造解析で特筆すべきは、この中間体のカルボニル炭 素を攻撃するに適した位置に水分子(図2D左中の W2) がみえていることである。また、カルボニル酸 素は2つのGly残基のNHと水素結合し、この後この 中間体が加水分解される際にとる四面体形遷移状態 を安定化するオキシアニオンホールの位置にある。よ り長くグルタチオン溶液に浸した G G T 結晶で は、Thr391Oyとy-グルタミル基との間の結合は切れて いた(図2D右)。ここでは γ -グルタミル基のCa-Cβ とCβ-Cy結合のねじれ角が変化しており、加水分解後 はこのように生成物が構造変化・遊離し、酵素は休 止状態に戻るのであろう。

このような一連の解析から、GGTでは一段階目の 反応が早く、2段階目の反応が遅い(結晶中で遅く なった)といえ、これ故に中間体が捉えられた。こ こでとった方法では、GGTとグルタチオンとのEScomplexの構造を捉えることは無理であった。なお、 中間体の電子密度がみえたが、結晶中で何%がこの状 態にあるか、結晶の表面と中心部での構成比率につ いて定量的なことは何ともいえない。この結晶の場 合、予想以上に早く基質が結晶中に浸透し、これが 幸いして中間体が捉えられたという印象は強い。

5. 例2-2:より不安定な酵素反応の途中の状態を捉える⁶

ここではヘムオキシゲナーゼ (HO) を用いて、よ り不安定な状態を捉えた方法を紹介する。HOはヘム 代謝で主要な役割を担っている酵素で、O₂と還元力 を利用して、ヘムのα位を特異的に開裂させる反応を 触媒する。この反応は3段階からなり、各段階でO₂ を一分子用い、最終的にビリベルジン、CO、Fe²⁺を 生じる (図3A) ⁷⁾。ヘムはHOにとって基質であると 共に、補酵素でもある。注目すべきは2段階目で生 じるCOである。よく知られているように、COはO₂よ りはるかに強くヘムやその誘導体に結合する性質を 持っている。発生したCOが存在する中で、3段階目 でHOはO₂をどのように選択しているのであろう?HO 中のヘムにCOが結合しにくい分子機構はいくつかあ るが⁸⁾、これに関連して、発生したCOを一時的にト ラップする部位がHO中にあるのではないか、あると すればどこだろう?

この疑問に答えるため、我々は以下のように結晶 解析法で取り組んだ。ここでは酵素反応でCOを発生 させる代わりに、HO中のヘムにCOを結合させ(COheme-HO)、これにレーザー光を照射してCOを解離 させることにした。CO-heme-HO結晶を回折計にマウ ントし、低温(~35K)で、まず薄暗くして回折デー タを収集した。次に、この結晶にレーザー光を照射 しながら、他は全く同じ条件で回折データを収集し た。これら2セットのデータ間の差(F_{illuminated}-F_{dark}) を係数にした電子密度を図3Bに示す。予想通り、へ ム鉄に結合していたCOの箇所は、レーザー光照射に よって電子密度が減少し、ヘムから少し離れた箇所で 電子密度が高くなった。このうちsite-2は疎水性のア ミノ酸側鎖に囲まれたキャビティーであった。この結 果から、光解離したCO(の一部)はこの部位にト ラップされたといえる。電子密度の高さから、この 実験条件では約10%のCOがヘム鉄から解離し、その 約半分がこの部位にトラップされたと見積もられ た。単一の結晶を用いて、レーザー光照射の有無以外

図3. HOが触媒する反応とCOの行方

(A) HOの3段階反応。HOは各段階で一分子のO2を用い、2段階目でCOが生成する。(B) CO-heme-HO結晶の暗所とレーザー光 照射の差の電子密度。レーザー光照射により減少した電子密度を赤で、増加した電子密度を青で示す。Bは生化学 77, 634-638 (2005)より許可を得て転載。 は全く同じ条件で測定した(電子密度のノイズを下げ た)ので、このようなわずかな電子密度変化(水素原 子の電子密度の高さに相当)を検知できたといえよ う。ちなみに、heme-HO結晶にXeガスを充満させ加 圧した後急速凍結させると、同じ部位にXeに由来す る電子密度が明瞭にみえる。なお、COの代わりに CN-を使った同様の実験では注目している部位に電子 密度はみえなかったことから、この部位はイオンを トラップしないといえよう。これらの結果から、酵 素反応で生じるCOもこの部位に一時的にトラップさ れ、これによってCOが幾らかでもへム鉄に結合する ことを防いでいると考えている。

6. おわりに

X線結晶解析法が生来もつ制約(結晶でなければな らない)の中で、不安定な分子の構造をみた例を幾 つか紹介した。これらの例からわかるように、この ような制約にどう対応するか、すなわち立体的に均 ーな分子が規則正しく配列した結晶をどう調製する かがキーポイントである。現在のX線解析技術で、結 晶中の分子を同期させて同じように構造変化を起こ すことができれば、ミリ秒オーダーの反応でも各ス ナップを捉えることができる。タンパク質分子の種類 にかかわらず、適切な試料(結晶)が準備できたかど うかが成否を分け、これをクリアーした場合にはこの 方法からきわめて重要かつ豊富な情報が得られる。

参考文献

1. Shimomura, Y., Kamikubo, H., Nishi, Y., Masako, T., Kataoka, M., Kobayashi, Y., Fukuyama, K., and Takahashi, Y. (2007) Characterization and crystallization of an IscU-type scaffold protein with bound [2Fe-2S] cluster from the hyperthermophile, *Aquifex aeolicus*, *J. Biochem.* 142, 577-586.

- Shimomura, Y., Wada, K., Fukuyama, K., and Takahashi, Y. (2008) The asymmetric trimeric architecture of [2Fe-2S] IscU: Implication for its scaffolding during iron-sulfur cluster biosynthesis, J. Mol. Biol. 383, 133-143.
- Tokumoto, U., Kitamura, S., Fukuyama, K., and Takahashi, Y. (2004). Interchangeability and distinct properties of bacterial Fe-S cluster assembly systems: Functional replacement of the *isc* and *suf* operons in *Escherichia coli* with the *nifSU*-like operon from *Helicobacter pylori*, J. Biochem. 136, 199-209.
- Okada, T., Suzuki, H., Wada, K., Kumagai, H., and Fukuyama, K. (2006) Crystal structures of γglutamyltranspeptidase from *Echerichia coli*, a key enzyme involved in glutathione metabolism, and its reaction intermediate, *Proc. Natl. Acad. Sci. USA 103*, 6471-6476.
- 5. 鈴木秀之,和田啓,福山恵一(2009)γ-グルタミ ルトランスペプチダーゼの立体構造に基づいた成 熟化と酵素反応機構,蛋白質核酸酵素 54, 245-251.
- Sugishima, M., Sakamoto, H., Noguchi, M., and Fukuyama, K. (2004) CO-trapping site in heme oxygenase revealed by photolysis of its CO-bound heme complex: Mechanism of escaping from product inhibition, *J. Mol. Biol.* 341, 7-13.
- 7. 杉島正一 (2007) ヘムの代謝にかかわる酵素の構 造生物学, 日本結晶学会誌 49,99-106.
- Sugishima, M., Sakamoto, H., Noguchi, M., and Fukuyama, K. (2003) Crystal structures of ferrous and CO-, CN⁻-, and NO-bound forms of rat heme oxygenase-1 (HO-1) in complex with heme: Structural implications for discrimination between CO and O₂ in HO-1, *Biochemistry* 42, 9898-9905.