光合成研究

第 27 巻 第 1 号 (通巻 78 号) 2017 年 4 月 NEWS LETTER Vol. 27 NO. 1 April 2017

THE JAPANESE SOCIETY OF PHOTOSYNTHESIS RESEARCH

集会案内	第8回日本光合成学会年会・公開シンポジウム開催のお知らせ	2	
トピックス	4 植物が安心して光合成できるワケーPSIを光傷害から護る P700 酸化システム~		
	嶋川 銀河 三宅 親弘(神戸大)	4	
研究紹介	硫化水素を電子供与体とする電子伝達系遺伝子の発現誘導:		
	転写制御タンパク質 SqrR の同定とその硫化水素応答機構		
	清水 隆之(東工大)	16	
研究紹介	光応答素子のための光化学系Iとカーボンナノチューブの複合体形成		
	二井 大輔 他(東京理科大)	22	
解説特集	「光化学系の構造・モデル計算から見えてきた光合成反応の妙」	31	
序文	得津 隆太郎(基生研) 柏山 祐一郎(福井工業大)	32	
解説 X 絼	泉自由電子レーザーを利用したタンパク質高分解能無損傷構造解析		
	平田 邦生(理研・放射光科学, JST/CREST)	33	
解説 Pho	tosystem II における水素結合ネットワークを介したプロトン移動		
	斉藤 圭亮(東京大)	39	
解說 植物	物の光化学系 I-集光性アンテナ複合体 I 超複合体の結晶構造とエネルギー伝達の構造	ī基盤	
	菅 倫寛(岡山大)	48	
報告記事	第2回光合成細菌ワークショップ開催報告		
	原田 二朗(久留米大)	55	
集会案内	第 73 回藤原セミナー"The 4 th International Conference "Molecular Life of Diatoms"		
	松田 祐介 (関西学院大)	57	
集会案内	第8回国際会議 "Photosynthesis and Hydrogen Energy Research for Sustainability -2017"		
	鞆 達也(東京理科大)	58	
集会案内	第 25 回「光合成セミナー2017:反応中心と色素系の多様性」		
	秋本 誠志 (神戸大)	59	
報告記事	若手の会の幹事の交代のご報告・新会長からのごあいさつ		
	浅井 智広(立命館大) 榎本 元(東京大)	60	
事務局から	らのお知らせ	62	
日本光合成	艾学会会員入会申込書	63	
日本光合成学会会則 64			
幹事会名簿 66			
編集後記・記事募集 67			
「光合成研究」編集委員・日本光合成学会 2017 年度役員 68			
賛助法人会員広告			

第8回日本光合成学会年会および公開シンポジウム

日時: 2017年5月27日(土)13:00~28日(日)15:30

会場: 龍谷大学 瀬田キャンパス (大津市)

 http://www.ryukoku.ac.jp/seta.html

 参加費:
 一般(会員) 2,000 円、一般(非会員) 3,000 円、学生 1,000 円

 *参加費、懇親会費は当日現金支払いです。

 懇親会費:
 一般 3,000 円、学生 2,000 円

参加申込: HPより参加申込 URL) https://goo.gl/forms/6P5ICf1Wqktv1ZDQ2 4月10日~4月28日

発表形式 ポスターおよび口頭(シンポジウムのみ)

シンポジウム1 光合成の水の酸化機構と電子伝達

(5月27日 13:00~15:30)

光化学系 II は、チラコイド膜にあるタンパク質複合体で、光合成電子伝達系の初発の反応を担う、機能的に非常に重要なタンパク質です。この複合体は、生体物質の中で唯一、水を酸化する機能を持っており、この反応で得た電子が電子伝達系で用いられます。長年、多くの研究者が水の酸化機構に興味をもって研究を進めて来ました。また、昨今のエネルギー問題に関連して、人工光合成分野の研究者やエネルギー開発分野の研究者などが興味をもっており、光化学系 II の水の酸化反応の分子機構の解明が期待されています。そこで本シンポジウムでは、構造や機能解析をリードしている若手研究者のトップランナーに水の酸化に関する最新の研究を紹介していただき、水の酸化機構の全貌の解明を目指して熱い議論ができればと考えています。

- 1. X線自由電子レーザーを用いた光化学系 Ⅱ水分解反応の機構解明 秋田 総理(岡山大学)
- 光合成水分解系の赤外分光解析
 中村 伸(名古屋大学)
- 3. 光化学系 II 表在性タンパク質の分子進化と水分解反応における役割 伊福 健太郎(京都大学)

オーガナイザー:杉浦 美羽 (愛媛大学)

ポスター紹介(1) (15:50~17:00) ポスターセッション(1) (17:00~18:40) **懇親会** (19:00~21:00) シンポジウム2 変動する光量への光合成機能の調節

(5月28日 9:00~11:30)

雲などの気象条件や被陰するものの影響で、植物は常に浮動する光量の中で生きています。光は光合 成のエネルギーのもとでもあり植物にとって必須なものでもありながら、一方で、過剰な場合には葉 緑体内に余分な酸化力を産みかねません。必要でもありまた状況においては不要ともなる両面性を有 しています。植物は、刻々と変化する光量に応じるメカニズムを発達させているはずですが、これま での一定光量で生育させる人工光環境下をもとにした研究では、この能力は過小評価されているよう に思います。そこで本シンポジウムでは、生理機能や生化学的解析、進化の視点から研究をリードし ている若手研究者に最新の研究成果を紹介していただき、光量変動への植物の適応について、今後、 全貌を知るためには何を明らかにしていけばよいのかなど、熱い議論ができればと考えています。

- 光環境の変動に対する光合成制御メカニズム 矢守 航 (東京大学)
- 2. 葉緑体機能を統御するレドックス制御ネットワーク 吉田 啓介(東京工業大)
- Flaveria 属における C₄型光合成の段階的成立
 谷口 清美(関西学院大)

オーガナイザー:古本 強(龍谷大学)

ポスター紹介(2)

(11:50~12:30)
ポスターセッション(2)
(12:30~14:30)
総会・受賞式
(14:30~15:30)

閉会

年会終了後、16時から9号館大会議室にて、若手の会を開催

世話人

古本 強(龍谷大学):年会準備委員長 杉浦 美羽(愛媛大学):年会企画委員長

トピックス

植物が安心して光合成できるワケ ~PSIを光傷害から護る P700 酸化システム~

> 神戸大学大学院 農学研究科 生命機能科学専攻 嶋川 銀河. 三宅 親弘*

本稿では光合成生物において普遍的に見出される生理現象「P700 酸化」について、その生理的意義お よび P700 酸化を支える多様な分子メカニズムを紹介する。光合成生物は強光や低 CO₂といった過剰 光環境にさらされると光化学系 I (PSI)の反応中心クロロフィルである P700 を酸化する。この事は植 物生葉において 90 年代から見出されており、庭先に生えている草木などで簡単に観察できる。なぜ光 合成生物は P700 を酸化する必要があるのか?どのようにして P700 は酸化されているのか?その長い 歴史の中でいつから光合成生物は P700 を酸化するようになったのか?近年私たちの研究グループは P700 酸化に関するこれらの問いに対する答えを探ってきた。豊富な「光」と「O₂」に囲まれた地球上 において、光合成では過剰な光によって有毒な活性酸素が生じる恐れがあり、PSI 内部で生じた活性 酸素は PSI に酸化傷害をもたらしてしまう。しかしながら、ダイナミックに変動する地球環境の中に おいて、光合成生物は P700 を酸化させる事によって PSI での活性酸素生成を未然に防いでいる。こ の P700 酸化は PSI のドナー側およびアクセプター側から多様な分子メカニズムによって制御されて おり、私たちはこれらを P700 酸化システムと定義した。P700 酸化システムは酸素発生型光合成の始 原生物であるシアノバクテリアの時点で既に多様化しており、またその長い進化の歴史の中で変化し てきた事が明らかとなった。一見すると何も考えずのんびり光を浴びているだけの植物、そんな彼ら の壮絶な生き様に関して、一人でも多くの方々に興味をもっていただければ幸いである。

1. はじめに:光合成に潜むリスク

どうして植物は安全に光合成できるのだろう か。光合成というのは太陽光から光エネルギーを 得て、水と二酸化炭素 (CO₂)を材料に有機物で ある糖を合成する反応である。酸素発生型光合成 では反応の副産物として酸素 (O₂)が生じる。ご 飯を食べて糖を摂取しなければ生きていけない 私たちヒトにとって、光合成は大変「うらやまし い」反応であり、また呼吸に必要な O₂を供給し てくれる「ありがたい」反応でもある。では当の 光合成生物にとってはどうだろうか。光エネル ギーを利用して自ら糖を作り出す、そんな便利な 反応にリスクは伴わないのだろうか。副産物とし て生じる O₂は彼らにとっても「ありがたい」だ ろうか。これらの疑問は古くから多くの研究者の 興味を惹き、長きに渡って光合成研究や酸素代謝 研究を突き動かしてきた。

光合成を営む生物はみな、光に起因した酸化傷 害を被るリスクを背負っている。地球上に降り注 ぐ太陽光は光合成生物にとってしばしば過剰で あり、扱いきれない余剰な光エネルギーが細胞内 に存在する O₂へと渡ってしまうと有毒な活性酸 素が生じてしまう^{1,2)}。活性酸素はその反応性の 高さゆえ生成すると速やかにタンパク質、核酸、 脂質など生体分子を破壊し、細胞の機能障害を引 き起こしてしまう³⁾。過剰な光による細胞の酸化 傷害は結果として光合成活性の低下や生育阻害 を招くため、これらは光傷害(あるいは光障害、 光阻害)として定義され⁴⁾、それぞれ光合成電子 伝達系の光化学系 II (PSII) と光化学系 I (PSI) で

^{*}連絡先 E-mail: cmiyake@hawk.kobe-u.ac.jp

起こるものに分けて研究されてきた。PSIIにおけ る光傷害は、反応中心サブユニットD1タンパク 質の失活が原因であり、光合成活性やクロロフィ ル蛍光測定における PSII 最大量子収率の低下に よって観測される⁵⁾。D1 タンパク質は失活しや すい一方で、修復のターンオーバーが非常に速く、 およそ数時間で新規に合成された D1 タンパク質 が機能し始め、PSII 活性が回復する事が知られて いる^{6,7)}。活性酸素は D1 タンパク質の修復を阻害 する事で PSII 光傷害を引き起こすと考えられる が⁸⁾、PSII 光傷害と活性酸素の詳細な関係につい ては未解明な部分が多い^{9,10)}。一方で PSI におけ る光傷害は、実験室レベルで見られる事は少なく、 例えば植物生葉を長時間の過剰光にさらしても PSI は失活しない。古くは低温感受性の植物にお いて、低温ストレスを与えた際に PSI が in vivo で失活する事が見出され 11、近年では特定の遺伝 子が欠損した変異体において、常温でも強光や変 動光、低 CO₂などの過剰光環境において PSI 光傷 害が起こる事が確認されている¹²⁻¹⁴⁾。PSIは、PSII と比べると頑丈で失活しにくいと言えるが、その 反面で修復が非常に遅く、一度失活した PSI は完 全に回復するために数日~数週間を要してしま う^{15,16)}。詳細な PSI 失活メカニズムについては未 だ不明な部分が多いが、その発見から半世紀にわ たって「O₂」と「PSII からの電子伝達」が PSI 光傷害に不可欠である事は多くの研究成果で一 致している^{2,17,18)}。これらの事実を考慮すると、 光合成が単に便利な反応ではなく酸化傷害とい う爆弾を内包した危険な反応である事、また光合 成生物にとって O2 は活性酸素を生み出す邪悪な 老廃物である事が分かる。

では自然界において光合成生物はどのように して活性酸素による傷害を避けているのだろう か。真夏の太陽光の下で風に揺られるヒマワリ畑 を想像してほしい。彼らは酸化傷害に苦しんでい るだろうか、過剰光や O₂に怯えながら生きてい るだろうか、私たちにはそうは見えない。彼ら光 合成生物は安全に光合成を営むために何かしら の後ろ盾を得ているに違いない。これまで私たち の研究グループは、光合成系において最大の活性 酸素生成源とも言える PSI において、どのように して活性酸素が生成するのか、また活性酸素の生 成が防がれるのか、それらのメカニズムを明らか にしてきた。以下ではそれら研究成果を順に紹介 する。

2. PSI における活性酸素生成メカニズム

PSI 光傷害の引き金となっているのは PSI 内部 で生成した活性酸素と考えられる (図1)^{2,19)}。光 合成電子伝達系における PSI のアクセプター側 では、Mehler 反応によって電子が Oっへと渡るこ とで活性酸素の1種であるスーパーオキシドア ニオンラジカル (O,-) が生成し²⁰⁾、その O,-が不 均化して生じる H₂O₂と PSI 内部の鉄-硫黄クラス ターがフェントン反応を起こす事でさらに酸化 力の高い活性酸素種であるヒドロキシルラジカ ル (OH) が生じる恐れがある²¹⁾。さらに PSI の アクセプター側が過還元状態にある時には、励起 した P700 が励起三重項状態 (³P700) に遷移する 事で一重項酸素 (¹O₂) が生成してしまう可能性 がある^{19,22,23)}。生成した活性酸素による PSI の失 活メカニズムについては、まず PSI アクセプター 側の電子受容体である Fx や FA/FB などが傷害を 受けて PSI 活性が低下し、その後に反応中心タン

図 1. PSI 内部における活性酸素生成メカニズム Takagi et al. (2016)¹⁹⁾ を参考にして作成した。

パク質の分解が生じると考えられている^{24,25)}。ま た面白い事に、単離チラコイド膜を用いた実験に おいて、過剰光による PSI 光傷害は O₂-不均化酵 素やアスコルビン酸ペルオキシダーゼといった 活性酸素消去酵素を添加しても抑制されない¹⁹⁾。 この結果は PSI 内部で生成した活性酸素が直ち に PSI 光傷害を引き起こす事を示している。つま り PSI 光傷害を防ぐためには、活性酸素の生成を 未然に防ぐ必要がある。

3. PSI における活性酸素生成の抑制メカニズム

強光や低 CO, といった過剰光にさらされる状 況に対して、光合成生物は普遍的な環境応答とし て P700 酸化を示す。P700 酸化とは文字通り P700 の酸化レベルが増加する事を示しており、具体的 には P700 全量に対する酸化型 P700 量 (%) ある いは Y(ND)というパラメータ等で扱われる。P700 酸化は in vivo で非破壊的に P700 の酸化還元を測 定する事が可能なパルス変調クロロフィル吸光 測定などの手法を用いて容易に観察する事が可 能であり、古くは植物生葉において 90 年代から 見出され²⁶⁻²⁸⁾、近年ではシアノバクテリアやコケ 植物などにおいても観測されている^{29,30)}。光過剰 な環境においては、NADPH の消費が光合成を律 速するため、電子受容体である NADP+の不足に よって光合成電子伝達系は過還元状態になる。つ まり P700 酸化は光過剰な環境に対して積極的に 誘導され、何らかの生理的な役割をもって機能し ていると考えられる。しかしながら、P700 酸化 の生理的な意義づけは全くなされていなかった。

私たちの研究グループは、P700酸化の生理的 意義が PSI 内部における活性酸素生成の予防す なわち光傷害に対する PSI 防御である事を初め て示した(図2)²⁾。暗所においたヒマワリ生葉に 飽和パルス光を連続的に照射すると実験室レベ ルで容易に PSI 光傷害を観察する事ができるが、 この時に飽和パルス光と同時に一定強度の定常 光を照射すると PSI 光傷害は抑制される²⁾。もち ろん定常光の強度が上がるにつれて P700 が酸化 していくが(図2A)、面白い事に P700 が酸化す るにつれて PSI 光傷害は見られなくなり(図 2B)、結果として飽和パルス光照射時の P700 酸

図 2. P700 酸化と PSI 光傷害の関係

(A) ヒマワリ生葉における光強度と P700 酸化の関係. (B) ヒマワリ生葉における光強度と PSI 光傷害の関係. (B) とマワリ生葉における光強度と PSI 光傷害の関係. 図 2A に示されるように、照射する定常光の光強度に依存してヒマワリ生葉の P700 は酸化されるが、この時にそれぞれ各光強度の定常光を照射しながら 4 時間の連続的飽和パルス光照射 (300 ms, 20,000 μ mol photons m⁻² s⁻¹, 10 秒ごとに照射)を行った。図中の残存 PSI 活性は光酸化可能な P700 の全量 (P_m)を意味しており、連続的飽和パルス光照射を行った後、1 時間の暗順化を挟んで測定された。データは 3 度の実験の平均値と標準誤差によって示される。 (C) ヒマワリ生葉における光強度と P700 酸化の関係. それぞれ図 2A および図 2B で示した P700 酸化と残存 PSI 活性をプロットした。データは全て Sejima et al. (2014)²⁾から引用した。

化と失活しなかった PSI との間に明確な相関が みられた (図 2C)²⁾。この事から P700 酸化の生理 的意義は PSI の防御であり、PSI 内部における活 性酸素生成を抑制するために P700 が酸化される 事が分かる。酸化型の P700 が増加する事は、基 底状態の P700 が減少する事を意味している。つ まり P700 が酸化される事によって、 O_2 へ渡る電 子の供給源が減少するとともに、 3 P700 生成のリ スクが緩和され、その結果として O_2 ^{-や 1} O_2 の生 成が抑制される ¹⁹。

4. P700 酸化を支える分子メカニズム

光合成生物において P700 酸化は様々な分子メ カニズムによって複合的に引き起こされる。本稿 ではこれら分子メカニズムを「P700 酸化システ ム」と呼ぶ (図 3)^{14,29,31)}。P700 の酸化還元は PSI の電子の入口 (ドナー側)と出口 (アクセプター 側)における電子伝達反応のバランスによって決 定される。以下では、それぞれドナー側、アクセ プター側に分けて順に P700 酸化システムを紹介 する。

PSI のドナー側において最も有力な P700 酸化 システムは、シトクロム b_6/f 複合体におけるプロ トン勾配 (Δp H) 依存的な電子伝達反応の抑制

図 3. P700 酸化システムのモデル

(A) FLV 依存型の P700 酸化システムモデ ル. 多くのシアノバクテリアや緑藻など がこちらにあてはまると考えられる。(B) 光呼吸依存型の P700 酸化システムモデ ル. 多くの被子植物とくに C₃植物がこち らにあてはまる。3つのバルブはそれぞれ エネルギー、電子、プロトンフラックス の安全弁を示す: NPQ, 非光化学的消光; g_(f), シトクロム b_/f 複合体周辺におけ るエレクトロンコンダクタンス; g_H⁺, ATP 合成酵素におけるプロトンコンダクタン ス。それぞれ NPQ と $g_{e}^{-}(f)$ は赤点線で示 されるように ΔpH やプラストキノン (PQ)酸化還元を感受する。また、PQ 還 元に起因する g_-(f)の低下は RISE として 定義される³⁰⁾。Y(II)、Y(I)はそれぞれ PSII および PSI における光化学反応の実効量 子収率を示し、V_H⁺は ATP 合成酵素にお けるプロトン流出速度を示す。図は Shimakawa et al. (2017)²⁹⁾ を参考にして作 成した。

と考えられる。図3では、シトクロム bdf 複合体 における電子の流れやすさを g_(f)として表す。 シトクロム bdf 複合体においてサブユニットfの 還元速度はチラコイド膜ルーメン内の酸性化に 伴って顕著に低下するため³²⁾、光合成生物はΔpH を制御して PSI への電子流入にブレーキをかけ る事により P700 を酸化できる。基本的に ΔpH 形 成は電子伝達活性に依存するため³³⁾、光合成の駆 動のみならず後述する O₂依存的代替的電子伝達 や循環的電子伝達 (Cyclic electron flow, CEF) は ルーメン内の酸性化に寄与する事が期待される ^{29), 34), 35)}。また一方で、ATP 合成酵素におけるプ ロトンコンダクタンス (g_H⁺) が低下し、チラコイ ド膜外へのプロトン流出速度 (V_H⁺) が抑制され る事によっても ΔpH は上昇する³⁶⁾。さらにチラ コイド膜上に存在するイオンチャネル K⁺-efflux antiporter がルーメン内からのプロトン漏出を調 整する事で ΔpH 形成に役立つ事も示唆されてい る³⁷⁾。そのほか陸上植物や緑藻においては proton gradient regulation 5 (PGR5) が ΔpH の制御に大き な役割をもつことが報告されている^{12,38)}。

シトクロム $b_{o}f$ 複合体周辺における電子伝達 反応は ΔpH のみならず、プラストキノンプール の過還元によっても抑制される。この P700 酸化

7

システムはシアノバクテリアで見出され reduction-induced suppression of electron transport (RISE) として報告された^{30,39)}。RISE が生じる際 には、プラストキノンプールの過還元に並行して シトクロムf および P700、NADPH の酸化が認め られ、面白い事にこれら電子伝達系下流の酸化が、 Δ pH に寄与すると考えられる O₂ 依存的代替的 電子伝達の欠損株においてむしろ顕著に見られ た。想定される RISE の分子メカニズムとして、 酸化型プラストキノンの不足による Q-サイクル の抑制が提唱されており³⁰⁾、今後は陸上植物など 真核光合成生物も含めた詳細な研究が期待され る。

クロロフィル蛍光測定によって定義される PSII での光エネルギーの熱放散 (Non-photochemical quenching, NPQ) もまた P700 酸化に寄与する事が期待される。緑藻クラミドモ ナスでは Δ pH 依存的な NPQ (qE) に関与する light-harvesting complex stress-related protein 3 の欠 損によって PSI 光傷害が深刻化する事が見出さ れており、NPQ による P700 酸化の可能性が示唆 されている⁴⁰。また広義の NPQ として PSII/PSI 間の光エネルギー分配変化 (ステート遷移, qT) や PSII 光傷害 (qI) なども挙げられるが、それぞ れ同様に P700 酸化への寄与が示唆されている ⁴⁰⁻⁴²。これらの結果は「PSII からの電子伝達」が P700 の酸化還元レベルに大きな影響をもつこと を裏付けている。

一方で PSI のアクセプター側においては、過剰 な電子の散逸を行う代替的電子伝達が P700 酸化 に貢献する。多くの代替的電子伝達反応において 最終的な電子のアクセプターは O₂であり、この 事は光合成生物が O₂を邪悪な老廃物として恐れ るだけでなく有益な「電子の受け口(エレクトロ ンシンク)」として賢く利用している事を意味す る。例えば C₃植物は、光呼吸代謝の中で O₂を利 用する事で過剰な光エネルギーを上手く消費す ると同時にリブロース 1,5-ビスリン酸の再生成 を行っている⁴³⁾。C₃植物の光呼吸活性は非常に 高く、そのエレクトロンシンク能によって CO₂ 補償点においても光合成に匹敵する程の電子伝 達活性が観察される⁴⁴⁾。光呼吸による代替的なエ レクトロンシンクはC₃植物のP700酸化に大きく 貢献しており、特に光合成が抑制される低CO₂ 環境およびそれをもたらす強光、乾燥ストレス下 などでは、一定の光呼吸活性がなければ植物は P700を酸化する事ができない⁴⁵。

光呼吸の他に大きなエレクトロンシンク能を もつ代替的電子伝達として Flavodiiron タンパク 質 (FLV または FDP) による O₂ 還元反応が挙げ られる⁴⁰。FLV はフラビンモノヌクレオチド結 合サイトと 2 鉄センターを有したフラビンタン パク質であり、光合成生物の中ではシアノバクテ リア、緑藻、コケ、シダ、裸子植物にホモログが 見出されている⁴⁷⁾。FLV は PSI のアクセプター 側において電子を受け取って O,を H,O に 4 電子 還元すると考えられるが^{14,46,48,49)}、その反応の生 理活性は非常に高くシアノバクテリアでは光合 成活性に匹敵するほどの電子伝達活性が確認さ れる^{46,50)}。シアノバクテリアのFLV 欠損株は、 変動光51)や低CO214)といった過剰光環境において P700を酸化できず、PSI光傷害を被ってしまう。 また近年では陸上にて光合成を始めたコケ植物 のゼニゴケ²⁹⁾やヒメツリガネゴケ⁵²⁾においても FLV が P700 酸化システムの一員として PSI 防御 に貢献する事が明らかになっている。特に嶋川ら 29は、水際環境での生存がいかに危険なものかを ゼニゴケを用いて初めて示した。FLV を欠損し たゼニゴケは水没すると速やかに光傷害の危険 にさらされる²⁹⁾。この事は陸上植物で働く光呼吸 が水中では機能しない事を示しており、また陸に 上がったばかりのゼニゴケにとって FLV の存在 が不可欠だった事を示している。FLV が P700 酸 化システムとして働いていたからこそ、植物の陸 上進出が起こりえたのだろう。

5. P700 酸化システムの多様性と進化的変遷

前項では様々な P700 酸化システムを紹介した が、それぞれ光合成生物によってどのシステムを 利用するのかは好き嫌いがある。シアノバクテリ アはおよそ 30 億年前に現れた最古の酸素発生型 光合成生物であるが、彼らの中において既に P700 酸化戦略の種多様性がみられる。最も多く 研究材料として扱われる Synechocystis sp. PCC 6803 (S. 6803) [♣] Synechococcus elongatus PCC 7942 (S. 7942) 、海洋性の Synechococcus sp. PCC 7002 (S. 7002) はそれぞれ複数の FLV アイソザ イムを持ち、それに依存した代替的電子伝達活性 を示すが、各々の種における FLV の P700 酸化に 対する寄与度は全く異なる (図 4)¹⁴⁾。S. 6803 は 2 セットの FLV ヘテロダイマー (FLV1/3 および FLV2/4) を有し、低 CO,環境において FLV2/4 を 高発現する事で代替的電子伝達を駆動する 49,50,53, ⁵⁴⁾。一方で S. 7942 は FLV2/4 を持たず、低 CO₂ 環境では光合成とともに電子伝達反応を抑制す る⁵⁰⁾。しかしながら面白い事に、これら2種のシ アノバクテリアは FLV およびその代替的電子伝 達活性に関係なく低 CO2環境で P700 を酸化する 事ができる^{14,30)}。これはドナー側において RISE など別の P700 酸化システムが機能するためだと 考えられ、結果的にこれら2種の野生株および FLV 欠損株は低 CO,環境にさらされても PSI 光 傷害を被らない¹⁴⁾。一方で S. 7002 は低 CO,環境 において FLV1/3 に依存した非常に大きな代替的

電子伝達活性を示し⁵⁵、その欠損株では低 CO₂ 環境で P700 酸化がみられない¹⁴⁾。結果として S. 7002 における FLV 欠損株は、低 CO₂環境におけ る 2 時間の短い光照射 (290 µmol photons m⁻² s⁻¹) によって PSI 光傷害による光合成活性の完全な 失活を示した¹⁴⁾。つまり S. 7002 は他の 2 種とは 異なり PSI 防御をほとんど FLV のみに依存して いる。これら嶋川、釋らの研究結果により、酸素 発生型光合成のルーツを担うシアノバクテリア において「光」が本質的にもつ危険性および P700 酸化の必要性が既に確立していた事が世界で初 めて示されたと同時に、PSI における活性酸素生 成抑制メカニズムの正体が P700 酸化であるとし た瀬島らの仮説²が実証された。

光合成生物は、その進化の歴史の中でそれぞれ の生存環境に合わせて P700 酸化システムを変化 させてきた。アクセプター側の P700 酸化システ ムである光呼吸と FLV を例に挙げたい(図 5)。 光呼吸は C₃植物において非常に大きな代替的電 子伝達活性を担うが⁴⁴、シアノバクテリアや緑藻

図4. 異なる3種のシアノバクテリアにおける低 CO2環境下での P700酸化と PSI 光傷害

(A-C) 光合成 CO₂ 濃度律速期への移行における P700 酸化の応答.シアノバクテリア生細胞を含む反応溶液 (HCO₃⁻を添加しない) に光を照射すると、じきに溶液環境中の CO₂ が光合成によって食い尽くされてしまい、 光合成が抑制される。この状態を私たちは光合成の CO₂ 濃度律速期と定義しており^{49,50}、このとき光合成は大 気中から溶液中への CO₂ 拡散によって律速されている。図 4A-C では、CO₂ 濃度律速期への移行が生じている時 間を点線矢印で示す。光強度 180 μ mol photons m⁻² s⁻¹ の励起光を用いた。黒丸が野生株、白丸が FLV 変異体を 示す。 (D-F) 低 CO₂ 環境下で生じる PSI 光傷害.光強度 290 μ mol photons m⁻² s⁻¹ の励起光を用いて CO₂ 濃度律 速期で 2 時間の光照射を行い、その後 1 時間の暗順化を挟んで残存 PSI 活性を測定した。図中の残存 PSI 活性は 光酸化可能な P700 の全量 (P_m)を意味する。データは全て Shimakawa et al. (2016) ¹⁴から引用した。

図 5. P700 酸化システムである 光呼吸および FLV の進化的変遷 Cyanophyta, シアノバクテリア; Chlorophyta, 緑藻; Bryophyta, コケ植物; Pteridophyta, シダ植 物; Gymnosperm, 裸子植物, Angiosperm (C_3), C_3 植物。

クラミドモナスにおいてはその活性は小さく、 P700酸化に寄与しているとは考えづらい^{49,50,55)}。 代わりに、これらシアノバクテリアや緑藻では FLV が主要なエレクトロンシンクとして P700 酸 化に貢献していると考えられる^{14,46,51,55)}。網羅的 な光呼吸活性の評価から、裸子植物やシダ植物、 そしてコケ植物においては光呼吸が十分なエレ クトロンシンク能を有している事が明らかに なっている 50。一方で陸上植物とは別の系統で進 化してきた珪藻 Phaeodactylum tricornutum では光 呼吸がエレクトロンシンクとして働いていな かった ⁵⁷⁾。水中では **O**₂の拡散速度が大気中と比 べて約 10,000 分の1 にまで低下する 58)。大気平 衡時における水中の O2濃度が約 250 μM である 事を考慮すると、光呼吸の初発反応であるルビス コのオキシゲナーゼ反応が示す O, への Km 値は 250~450 µM とあまりにも高い⁵⁹⁾。これらを考慮 すると光合成生物は、大気中の豊富な O₂に触れ て初めて光呼吸をエレクトロンシンクとして利 用し始め、陸上進出が進むにつれて本格的に光呼 吸を P700 酸化システムとして駆動するようにな り、結果として FLV が不必要になってしまった と推察する事も可能である。FLV による O, 還元 反応での K_m 値はおよそ1 μ M であるため^{48,49}、 シアノバクテリアや緑藻、そして水際に生息する ゼニゴケなどにとっては都合が良かったのかも しれない²⁹⁾。実際、ゼニゴケ FLV 欠損株は水没 するとPSII電子伝達活性の顕著な低下を示す²⁹⁾。 これは光呼吸の初発反応であるルビスコのオキ シゲナーゼ反応が水中で十分に駆動していない、

つまり水中環境では光呼吸がエレクトロンシン クとして機能できない事を示している。ただし、 光呼吸代謝そのものはシアノバクテリアの時点 で既に獲得されており、多くの藻類で生育に不可 欠な代謝系として機能している事に注意しなけ ればならない^{60,61)}。シアノバクテリアや緑藻、珪 藻において光呼吸は P700 酸化システムではなく、 別の生理的役割を担っているのだろう。面白いこ とに、同じ陸上植物でも C₄植物はほとんど光呼 吸活性を示さない事からC。植物とは異なるP700 酸化システムを発達させていると考えられる 44, ⁵⁶⁾。また藻類の中でもユーグレナ藻 Euglena gracilis においては光呼吸による代替的電子伝達 活性の存在が示唆された 57)。自然界には私たちの 知らない P700 酸化システムの多様性がまだまだ 眠っていそうである。

PSIドナー側のP700酸化システムに関しても、 シアノバクテリアで見出された RISE が植物への 進化を経た後も残されたのかは分かっていない。 緑藻や陸上植物において ΔpH の制御に貢献する と考えられている PGR5 はシアノバクテリアで は同様の機能を持たない⁵¹⁾。これらドナー側の P700酸化システムが光合成生物の歴史の中でど のような進化的変遷を辿ってきたのか興味深い。

6. P700 酸化システムは、人工的変動光環境でも たらされる光傷害を理解するための分子基盤で ある

瀬島ら²⁾が確立した「活性酸素による PSI 光傷 害の誘導法」では、飽和パルス光 (10~1,000 ms) 照射により、一瞬にして光合成電子伝達系を電子 で満たすことができる。これは、植物が環境スト レスにさらされた際の過剰光環境を模倣する簡 便な方法である。この方法では、光合成の駆動に 伴って P700 酸化システムが機能し、P700 が酸化 状態にあると、パルス光照射による PSI 光傷害が 観測されない。この理由は、前述のとおりである。 一方、光合成が駆動していない時にパルス光を照 射すると PSI 光傷害が観測される。ここで注目す べき事は、P700 が酸化されていない状況で、光 合成に使われる以上の光エネルギーにより P700 が励起されると活性酸素生成に至ってしまうこ とである。このことが、人工的変動光環境実験で PSI 光傷害が生じてしまう理由である。

高木ら³¹⁾は、P700酸化システムが飽和光強度 のパルス光照射に対しても機能することができ れば PSI 光傷害が生じないことを見出した。コケ、 シダ、裸子植物は、パルス光照射の短い間 (< 1,000 ms) でも P700 を速やかに酸化し、PSI 光傷 害を抑制する事ができる (図 6)³¹⁾。この P700 酸 化はFLVによるものであり、O.を必要とする (図 6)^{29,31)}。FLV による P700 酸化は、光合成生物の 進化過程においてシアノバクテリアの時に既に 確立されているが^{14,40}、高木らが示した陸上植物 における P700 酸化の多様性は、陸上に進出し O2 の危険にさらされる事になったコケ、シダ、裸子 植物が FLV を P700 酸化システムとして利用しつ づけていた事を示している。ゼニゴケ FLV 欠損 変異株においてパルス光照射の間に P700 酸化が 観測されないことから (図 6)、いかに FLV が優 れた P700 酸化能力、つまり活性酸素生成抑制効 果をもっているかうかがえる^{29,31)}。

一方で被子植物は、FLV を用いた P700 酸化シ ステムをもたず (図 6)、それゆえパルス光照射 による PSI 光傷害を瀬島ら²⁰は見出すことができ た。フィンランドの Aro グループが世界で最初に 示した人工的変動光環境実験では、シロイヌナズ ナ野生株と PGR5 変異体の人工的変動光への暴 露が検討された¹³⁾。ここで重要なのは、野生株が 人工的変動光環境で PSI 光傷害を被らなかった 事である。その理由として、第1に、人工的変動 光環境実験で用いる光強度が約 2,000 µmol photons m⁻² s⁻¹ (太陽光強度の約8割程度) と瀬島 ら²⁾の方法 (20,000 µmol photons m⁻² s⁻¹) に比べ て小さい事が挙げられる。瀬島らが用いた光強度 では、約1時間の短い間で PSI 光傷害が生じる。 一方で瀬島らは、太陽光強度の約8割(2,000 *u*mol photons m⁻² s⁻¹) においても PSI 光傷害が生 じることを見出しているが、その場合には明確に PSIの失活がみられるまで数時間を要する²⁾。こ の事が、Aro グループの研究で野生株の PSI 光傷 害がみられなかった理由である。第2に、人工的 変動光環境実験では矩形の光強度変化が適用さ れるが、その光照射時間がパルス光と比べて非常 に長く(数十分オーダー)、その間に P700 酸化 システムが駆動してしまう事が挙げられる。つま り人工的変動光環境実験では、生葉への突然の過 剰光照射によって活性酸素生成の危険が生じる ものの、それと同時に P700 酸化による活性酸素 生成の抑制が起こっているため、非常に複雑な生 理現象が同時に生じている。Aro グループの報告

キンモクセイ、クロマツ、コゴミ、ゼニゴケ野生株 および *flv1* 欠損株に対して1 秒間のパルス光 (5,000 μ mol photons m⁻² s⁻¹)を照射した。図中には大気 O₂ 濃度条件 (+ O₂, 21 kPa O₂)および嫌気条件 (- O₂, 0 kPa O₂) での実験結果をそれぞれ実線と破線で示す。 データは全て Takagi et al. (2017)³¹⁾から引用した。 ¹³における PGR5 変異体の PSI 光傷害は、矩形の 光強度変動の間に PGR5 変異体において P700 酸 化が生じない事による非常に興味深い事例であ る。

このように人工的変動光環境実験で観測され る PSI 光傷害は、P700 酸化システムの観点から 理解できる。FLV をもたない被子植物が地球環 境で大繁栄しているという事実を直視すれば、人 工的変動光が植物に与える事例は無視できるこ とかもしれない。しかしながら、PGR5の役割を 世界で最初に示した Aro グループの功績は、人工 的変動光環境が P700 酸化システムの能力評価に 貢献することを示唆している。実際に瀬島ら³⁾ のパルス光照射実験では、野生株においても PGR5 変異体同様に PSI 光傷害が生じてしまうた め、両者の間に差を見出すことができない。人工 的変動光環境実験はその光照射の間に P700 酸化 を誘導するからこそ、P700 酸化システム変異体 の性質解明に有効である。

7. おわりに: P700 酸化と光合成

なぜ P700 は酸化される必要があるのか、それ は光合成生物が「安心して」光合成を行うためで あると私たちは考える。P700 酸化は光合成に直 接影響しない。光合成活性(あるいは電子伝達活 性) と P700 酸化の間には明確な相関はなく³¹⁾、 その証拠にシアノバクテリアでは、低 CO2環境に さらされて同じように電子伝達活性が低下して いく中でも P700 を酸化する細胞と酸化しない細 胞が作出される¹⁴⁾。もちろん P700 酸化システム を欠損しても光合成活性そのものが低下する事 はない¹⁴⁾。私たちの研究グループは P700 酸化と PSI 防御の間に明確な相関を見出し、世界で初め て P700 酸化の生理的な意義づけを行った²⁾。そ の後この仮説は、多様なシアノバクテリアを用い た解析により実証され¹⁴⁾、また光合成生物に普遍 的にあてはまる事が示された³¹⁾。P700酸化はPSI 内部における活性酸素生成を未然に防ぐために 存在し^{2,19}、P700酸化システムは PSI を酸化傷害 から護るために働いている (図 3) 14,29,31)。つまり 光合成生物は、P700 が酸化できなければ例え光 合成を行えたとしても常に「光」と「O₂」に怯え て暮らさなければならない。酸素発生型の光合成 生物が誕生する以前から地球上には極低濃度の O_2 が存在し、生物は酸化傷害の危険にさらされ ていた⁶²⁾。光合成生物のご先祖さまであるシアノ バクテリアにおいて P700 酸化システムは既に多 様化していた¹⁴⁾。つまり P700 酸化システム無く して光合成の誕生は有り得なかったに違いない。 そして、それら「 O_2 」毒性にさらされていながら 逆に「 O_2 」を利用する事で P700 を酸化する戦略 を見出した^{38,53,63,64)}、そんな彼らの貪欲かつ賢明 な生き様に改めて感服する。

謝辞

執筆の場を与えて下さった伊福健太郎先生(京 都大学)、および査読していただいた先生方に対 して心からお礼申し上げる。

Received March 01, 2017; Accepted March 14, 2017; Published April 30, 2017

参考文献

- Asada, K. (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. *Plant Physiol.* 141, 391–396.
- Sejima, T., Takagi, D., Fukayama, H., Makino, A. and Miyake, C. (2014) Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. *Plant Cell Physiol*. 55, 1184–1193.
- Bowler, C., Van Montagu, M. and Inzé, D. (1992) Superoxide dismutase and stress tolerance. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 43, 83–116.
- 4. Kok, B. (1956) On the inhibition of photosynthesis by intense light. *Biochim. Biophys. Acta* 21, 234–244.
- Murata, N., Takahashi, S., Nishiyama, Y. and Allakhverdiev, S.I. (2007) Photoinhibition of photosystem II under environmental stress. *Biochim. Biophys. Acta Bioenerg.* 1767, 414–421.
- Sundby, C., Chow, W.S. and Anderson, J.M. (1993) Effects on photosystem II function, photoinhibition, and plant performance of the spontaneous mutation of serine-264 in the photosystem II reaction center D1 protein in triazine-resistant *Brassica napus* L. *Plant Physiol.* 103, 105–113.
- Neidhardt, J., Benemann, J.R., Zhang, L. and Melis, A. (1998) Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna

size and photosynthetic productivity in *Dunaliella* salina (green algae). *Photosynth. Res.* 56, 175–184.

- Nishiyama, Y., Allakhverdiev, S.I., Yamamoto, H., Hayashi, H. and Murata, N. (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in *Synechocystis* sp. PCC 6803. *Biochemistry* 43, 11321–11330.
- 9. Tyystjärvi, E. (2008) Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. *Coord. Chem. Rev.* 252, 361–376.
- Krause, G.H., Köster, S. and Wong, S.C. (1985) Photoinhibition of photosynthesis under anaerobic conditions studied with leaves and chloroplasts of *Spinacia oleracea* L. *Planta* 165, 430–438.
- Terashima, I., Funayama, S. and Sonoike, K. (1994) The site of photoinhibition in leaves of *Cucumis sativus* L. at low temperatures is photosystem I, not photosystem II. *Planta* 193, 300–306.
- Munekage, Y., Hojo, M., Meurer, J., Endo, T., Tasaka, M. and Shikanai, T. (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. *Cell* 110, 361–371.
- Suorsa, M., Jarvi, S., Grieco, M., Nurmi, M., Pietrzykowska, M., Rantala, M., Kangasjarvi, S., Paakkarinen, V., Tikkanen, M., Jansson, S. and Aro, E.M. (2012) PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. *Plant Cell* 24, 2934–2948.
- Shimakawa, G., Shaku, K. and Miyake, C. (2016) Oxidation of P700 in photosystem I is essential for the growth of cyanobacteria. *Plant Physiol.* 172, 1443–1450.
- 15. Kudoh, H. and Sonoike, K. (2002) Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. *Planta* 215, 541–548.
- 16. Zivcak, M., Brestic, M., Kunderlikova, K., Sytar, O. and Allakhverdiev, S.I. (2015) Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO₂ assimilation and photoprotection in wheat leaves. *Photosynth. Res.* 126, 449–463.
- Satoh, K. (1970) Mechanism of photoinactivation in photosynthetic systems II. The occurrence and properties of two different types of photoinactivation. *Plant Cell Physiol.* 11, 29–38.
- Sonoike, K. (1996) Degradation of *psaB* gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I: possible involvement of active oxygen species. *Plant Sci.* 115, 157–164.
- 19. Takagi, D., Takumi, S., Hashiguchi, M., Sejima, T. and

Miyake, C. (2016) Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. *Plant Physiol.* 171, 1626–1634.

- 20. Mehler, A.H. (1951) Studies on reactions of illuminated chloroplasts. *Arch. Biochem. Biophys.* 33, 65–77.
- Youngman, R.J. and Elstner, E.F. (1981) Oxygen species in paraquat toxicity: the crypto-OH radical. *FEBS Lett.* 129, 265–268.
- Polm, M. and Brettel, K. (1998) Secondary pair charge recombination in photosystem I under strongly reducing conditions: temperature dependence and suggested mechanism. *Biophys. J.* 74, 3173–3181.
- Cazzaniga, S., Li, Z., Niyogi, K.K., Bassi, R. and Dall'Osto, L. (2012) The Arabidopsis *szl1* mutant reveals a critical role of β-carotene in photosystem I photoprotection. *Plant Physiol*. 159, 1745–1758.
- 24. Sonoike, K., Terashima, I., Iwaki, M. and Itoh, S. (1995) Destruction of photosystem I iron-sulfur centers in leaves of *Cucumis sativus* L. by weak illumination at chilling temperatures. *FEBS Lett.* 362, 235–238.
- Zhang, S. and Scheller, H.V. (2004) Photoinhibition of photosystem I at chilling temperature and subsequent recovery in *Arabidopsis thaliana*. *Plant Cell Physiol*. 45, 1595–1602.
- 26. Klughammer, C. and Schreiber, U. (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700⁺-absorbance changes at 830 nm. *Planta* 192, 261–268.
- Laisk, A. and Oja, V. (1994) Range of photosynthetic control of postillumination P700⁺ reduction rate in sunflower leaves. *Photosynth. Res.* 39, 39–50.
- Miyake, C., Miyata, M., Shinzaki, Y. and Tomizawa, K. (2005) CO₂ response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves-relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. *Plant Cell Physiol.* 46, 629–637.
- 29. Shimakawa, G., Ishizaki, K., Tsukamoto, S., Tanaka, M., Sejima, T. and Miyake, C. (2017) The liverwort, *Marchantia*, drives alternative electron flow using a flavodiiron protein to protect PSI. *Plant Physiol.* doi: 10.1104/pp.16.01038.
- 30. Shaku, K., Shimakawa, G., Hashiguchi, M. and Miyake, C. (2016) Reduction-induced suppression of electron flow (RISE) in the photosynthetic electron transport system of *Synechococcus elongatus* PCC 7942. *Plant Cell Physiol.* 57, 1443–1453.
- Takagi, D., Ishizaki, K., Hanawa, H., Mabuchi, T., Shimakawa, G., Yamamoto, H. and Miyake, C. (2017) Diversity of strategies for escaping reactive oxygen

species production within photosystem I among land plants. *Physiol. Plant*. In press.

- Nishio, J.N. and Whitmarsh, J. (1993) Dissipation of the proton electrochemical potential in intact chloroplasts (II. The pH gradient monitored by cytochrome f reduction kinetics). *Plant Physiol.* 101, 89–96.
- Avenson, T.J., Cruz, J.A., Kanazawa, A. and Kramer, D.M. (2005) Regulating the proton budget of higher plant photosynthesis. *Proc. Natl. Acad. Sci. U. S. A.* 102, 9709–9713.
- 34. Livingston, A.K., Cruz, J.A., Kohzuma, K., Dhingra, A. and Kramer, D.M. (2010) An Arabidopsis mutant with high cyclic electron flow around photosystem I (*hcef*) involving the NADPH dehydrogenase complex. *Plant Cell* 22, 221–233.
- 35. Schreiber, U. and Neubauer, C. (1990) O_2 -dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence. *Photosynth. Res.* 25, 279–293.
- 36. Takizawa, K., Kanazawa, A. and Kramer, D.M. (2008) Depletion of stromal Pi induces high 'energy-dependent' antenna exciton quenching (qE) by decreasing proton conductivity at CF₀-CF₁ ATP synthase. *Plant Cell Environ*. 31, 235–243.
- 37. Armbruster, U., Carrillo, L.R., Venema, K., Pavlovic, L., Schmidtmann, E., Kornfeld, A., Jahns, P., Berry, J.A., Kramer, D.M. and Jonikas, M.C. (2014) Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. *Nat. Commun.* 5, 5439.
- 38. Johnson, X., Steinbeck, J., Dent, R.M., Takahashi, H., Richaud, P., Ozawa, S.-I., Houille-Vernes, L., Petroutsos, D., Rappaport, F., Grossman, A.R., Niyogi, K.K., Hippler, M. and Alric, J. (2014) Proton gradient regulation 5-mediated cyclic electron flow under ATPor redox-limited conditions: A study of $\Delta ATPase \ pgr5$ and $\Delta rbcL \ pgr5$ mutants in the green alga *Chlamydomonas reinhardtii. Plant Physiol.* 165, 438–452.
- Shaku, K. and Miyake, C. (2016) 光合成と O₂ の研究から見えてきた,新たな電子伝達制御メカニズムの存在. 光合成研究 26,10-22.
- 40. Bergner, S.V., Scholz, M., Trompelt, K., Barth, J., Gäbelein, P., Steinbeck, J., Xue, H., Clowez, S., Fucile, G., Goldschmidt-Clermont, M., Fufezan, C. and Hippler, M. (2015) STATE TRANSITION7-dependent phosphorylation is modulated by changing environmental conditions, and its absence triggers remodeling of photosynthetic protein complexes. *Plant Physiol*. 168, 615–634.
- 41. Grieco, M., Tikkanen, M., Paakkarinen, V., Kangasjarvi,

S. and Aro, E.M. (2012) Steady-state phosphorylation of light-harvesting complex II proteins preserves photosystem I under fluctuating white light. *Plant Physiol.* 160, 1896–1910.

- 42. Huang, W., Yang, Y.-J., Hu, H. and Zhang, S.-B. (2016) Moderate photoinhibition of photosystem II protects photosystem I from photodamage at chilling stress in tobacco leaves. *Front. Plant. Sci.* 7, 182.
- Ruuska, S., Andrews, T.J., Badger, M.R., Hudson, G.S., Laisk, A., Price, G.D. and von Caemmerer, S. (1999) The interplay between limiting processes in C₃ photosynthesis studied by rapid-response gas exchange using transgenic tobacco impaired in photosynthesis. *Funct. Plant Biol.* 25, 859–870.
- 44. Sejima, T., Hanawa, H., Shimakawa, G., Takagi, D., Suzuki, Y., Fukayama, H., Makino, A. and Miyake, C. (2016) Post-illumination transient O₂-uptake is driven by photorespiration in tobacco leaves. *Physiol. Plant.* 156, 227–238.
- 45. Takagi, D., Hashiguchi, M., Sejima, T., Makino, A. and Miyake, C. (2016) Photorespiration provides the chance of cyclic electron flow to operate for the redox-regulation of P700 in photosynthetic electron transport system of sunflower leaves. *Photosynth. Res.* 129, 279–290.
- 46. Helman, Y., Tchernov, D., Reinhold, L., Shibata, M., Ogawa, T., Schwarz, R., Ohad, I. and Kaplan, A. (2003) Genes encoding A-type flavoproteins are essential for photoreduction of O₂ in cyanobacteria. *Curr. Biol.* 13, 230–235.
- Yamamoto, H., Takahashi, S., Badger, M.R. and Shikanai, T. (2016) Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis. *Nat. Plants* 2, 16012.
- 48. Vicente, J.B., Gomes, C.M., Wasserfallen, A. and Teixeira, M. (2002) Module fusion in an A-type flavoprotein from the cyanobacterium *Synechocystis* condenses a multiple-component pathway in a single polypeptide chain. *Biochem. Biophys. Res. Commun.* 294, 82–87.
- Shimakawa, G., Shaku, K., Nishi, A., Hayashi, R., Yamamoto, H., Sakamoto, K., Makino, A. and Miyake, C. (2015) FLAVODIIRON2 and FLAVODIIRON4 proteins mediate an oxygen-dependent alternative electron flow in *Synechocystis* sp. PCC 6803 under CO₂-limited conditions. *Plant Physiol*. 167, 472–480.
- 50. Hayashi, R., Shimakawa, G., Shaku, K., Shimizu, S., Akimoto, S., Yamamoto, H., Amako, K., Sugimoto, T., Tamoi, M., Makino, A. and Miyake, C. (2014) O₂-dependent large electron flow functioned as an electron sink, replacing the steady-state electron flux in photosynthesis in the cyanobacterium *Synechocystis* sp.

PCC 6803, but not in the cyanobacterium *Synechococcus* sp. PCC 7942. *Biosci. Biotechnol. Biochem.* 78, 384–393.

- 51. Allahverdiyeva, Y., Mustila, H., Ermakova, M., Bersanini, L., Richaud, P., Ajlani, G., Battchikova, N., Cournac, L. and Aro, E.M. (2013) Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. *Proc. Natl. Acad. Sci. U. S. A.* 110, 4111–4116.
- 52. Gerotto, C., Alboresi, A., Meneghesso, A., Jokel, M., Suorsa, M., Aro, E.-M. and Morosinotto, T. (2016) Flavodiiron proteins act as safety valve for electrons in *Physcomitrella patens. Proc. Natl. Acad. Sci. U. S. A.* 113, 12322–12327.
- 53. Zhang, P., Allahverdiyeva, Y., Eisenhut, M. and Aro, E.M. (2009) Flavodiiron proteins in oxygenic photosynthetic organisms: photoprotection of photosystem II by Flv2 and Flv4 in *Synechocystis* sp. PCC 6803. *PLoS One* 4, e5331.
- 54. Shimakawa, G. (2015) シアノバクテリアの光合成 における酸素利用. *光合成研究* 25,16-21.
- 55. Shimakawa, G., Akimoto, S., Ueno, Y., Wada, A., Shaku, K., Takahashi, Y. and Miyake, C. (2016) Diversity in photosynthetic electron transport under [CO₂]-limitation: the cyanobacterium *Synechococcus* sp. PCC 7002 and green alga *Chlamydomonas reinhardtii* drive an O₂-dependent alternative electron flow and non-photochemical quenching of chlorophyll fluorescence during CO₂-limited photosynthesis. *Photosynth. Res.* 130, 293–305.
- 56. Hanawa, H., Takagi, D., Shimakawa, G., Nohira, K., Sejima, T., Shaku, K., Makino, A. and Miyake, C. (2017) Land plants drive photorespiration as higher electron-sink: Comparative study of post-illumination transient O₂-uptake rates from liverworts to angiosperms through ferns and gymnosperms. *Physiol*.

Plant. In press.

- 57. Shimakawa, G., Matsuda, Y., Nakajima, K., Tamoi, M., Shigeoka, S. and Miyake, C. (2017) Diverse strategies of O₂ usage for preventing photo-oxidative damage under CO₂ limitation during algal photosynthesis. *Sci. Rep.* 7, 41022.
- Raven, J.A., Osborne, B.A. and Johnston, A.M. (1985) Uptake of CO₂ by aquatic vegetation. *Plant Cell Environ.* 8, 417–425.
- Jordan, D.B. and Ogren, W.L. (1981) Species variation in the specificity of ribulose biphosphate carboxylase/oxygenase. *Nature* 291, 513–515.
- 60. Eisenhut, M., Ruth, W., Haimovich, M., Bauwe, H., Kaplan, A. and Hagemann, M. (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. *Proc. Natl. Acad. Sci. U. S. A.* 105, 17199–17204.
- Rademacher, N., Kern, R., Fujiwara, T., Mettler-Altmann, T., Miyagishima, S., Hagemann, M., Eisenhut, M. and Weber, A.P.M. (2016) Photorespiratory glycolate oxidase is essential for the survival of the red alga *Cyanidioschyzon merolae* under ambient CO₂ conditions. J. Exp. Bot. 67, 3165–3175.
- 62. Asada, K. (2009) シアノバクテリアの酸素適応と活 性酸素適応. 光合成研究 19,75-80.
- 63. Miyake, C. and Makino, A. (2003) Water-Water 回路 の進化と光合成スターターとしての酸素利用. 化 学と生物 41,478–487.
- 64. Takagi, D. and Miyake, C. (2014) これまで欠けていた、速度論的評価に基づく、オルタナティブ・エレクトロン・フロー活性の比較と光合成におけるO₂の役割: 生理的な意味が見える、本丸へ挑む. 光合成研究 24, 97-110.

P700 oxidation system protects PSI against photo-oxidative damage: Why are plants safe in the light?

Ginga Shimakawa and Chikahiro Miyake*

Graduate School of Agricultural Science, Kobe University

研究紹介

硫化水素を電子供与体とする電子伝達系遺伝子の発現誘導: 転写制御タンパク質 SqrR の同定とその硫化水素応答機構[§]

東京工業大学 大学院生命理工学研究科 清水 降之*

誕生初期の光合成では硫化水素を電子供与体としていた可能性が高い。現存する酸素非発生型光合成 細菌でも硫化水素などのイオウ化合物を電子供与体として光合成を行うものが多く存在する。私は硫 化水素に応答したシグナル制御機構を解明するために、紅色光合成細菌 *Rhodobacter capsulatus* から 硫化水素応答性の転写因子 SqrR を同定し、その分子機構を解析した。その結果、SqrR は、硫化水素 由来の活性イオウ分子種によって 2 つの Cys 残基の間で分子内テトラスルフィド結合が形成されるこ とで、オペレーター領域への DNA 結合能が弱まることがわかった。これより、硫化水素依存的な光合 成の転写制御の分子機構が明らかとなった。

1. はじめに

光合成が地球上に誕生した初期の段階では、水 よりも酸化が容易な硫化水素などのイオウ化合 物を電子供与体として光合成が行われていたと 考えられている。実際、硫化水素を電子供与体と して光合成を行う細菌種が現在も多数同定され ている。光合成電子伝達系で硫化水素の酸化に関 わる酵素は、Sulfide:quinone oxidoreductase (SQR)

¹⁾、Flavocytochrome *c* sulfide dehydrogenase (FccAB)²⁾、Sox 酵素群³⁾が知られており、特に SQR が主要な役割を担っていると考えられてい る⁴⁾。これら酵素の研究から、硫化水素依存的な 光合成電子伝達系はかなり明らかになってきた。 硫化水素の酸化に関わる酵素の発現は、硫化水素 濃度に応じて制御されていると考えられる。実際、 紅色光合成細菌 *R. capsulatus* において、SQR の発 現が硫化水素処理で誘導されることが報告され ている⁵⁾。しかし、硫化水素応答性の制御因子が 同定されておらず、詳しい制御機構は未だ明らか でない。急激な生物進化には、遺伝子構造の変化 よりも遺伝子制御系の変化の方が重要だと考え

[§]第7回日本光合成学会シンポジウム ポスター発表賞受賞 論文

*連絡先 E-mail: shimizu.t.au@m.titech.ac.jp

られている。そのため、硫化水素の応答機構は、 初期の光合成の進化にとって重要だったと考え られる。

私は、硫化水素の応答機構を分子レベルで解明 するために、*R. capsulatus*を用いて、硫化水素応 答性の転写因子 SqrR を同定した。本稿では、SqrR の DNA 結合能と転写制御活性が Cys 残基のテト ラスルフィド結合形成によって変化することを 示す^の。

2. 硫化水素応答性転写因子 SqrR の同定

硫化水素応答性の制御因子の同定を、遺伝子操 作が容易な R. capsulatus を用いた順遺伝学的手 法によって行った⁷⁾。硫化水素で発現誘導を受け る sqr 遺伝子の発現変化を指標にすることで、硫 化水素非感受性の変異株の単離を試みた。変異株 の選抜のために、sqr プロモーターの下流に lacZ 遺伝子を融合したプラスミド(sqr::lacZ-fusion) を作成した。sqr プロモーターが硫化水素イオン

(HS⁻)特異的に応答することを確認するために、
 sqr::lacZ-fusion を保有する *R. capsulatus* を、好気
 または嫌気培養条件で硫化ナトリウム (Na₂S) 処
 理し、各細胞のβガラクトシダーゼ活性を指標に、
 sqr プロモーター活性の時間変化を測定した。そ

図 1. sqr-lacZ fusionによるβガラクトシダーゼ活性 好気培養(A)もしくは光嫌気培養(B)で log 期中 期まで生育させ、何も添加しない(白四角)もしく は終濃度 0.6 mM Na₂S(白三角)を添加したときを0 分として、さらに 0.5、1、2、4 時間培養したときの β ガラクトシダーゼ活性を測定した。

の結果、*sqr* 遺伝子は硫化水素イオン (Na₂S は水 溶液中では主として硫化水素イオンとして存在 する)に応答して転写が誘導されることがわかっ た(図1)。

R. capsulatus 野生株 (WT) は β-ガラクトシダー ゼ (lacZ 遺伝子産物) をもたないためラクトース を唯一の炭素源とした培地では生育することが できない。一方、sqr プロモーター制御下に lacZ を連結した sqr::lacZ-fusion 保有株は、硫化水素存 在下で lacZ の発現が誘導されるためラクトース を炭素源として生育が可能となる。R. capsulatus の sqr::lacZ-fusion 保有株を EMS で処理すること で突然変異を誘発した後、硫化水素非存在下でラ クトースを唯一の炭素源とした培地を用いて好 気培養した。この条件では硫化水素非存在下でも lacZが発現するようになった細胞(硫化物非感受 性株)のみ生育が可能である。このスクリーニン グにより、突然変異を誘発した 10⁸ 個の細胞から 約30株の硫化水素非感受性変異株が単離できた。 得られた変異株のうち 3 株について、 sqr::lacZ-fusion の sqr プロモーター領域に変異が ないことを確認した後、ゲノム DNA のリシーケ ンスによって変異箇所の同定を行った。その結果、 複数の候補遺伝子が同定された。候補遺伝子をそ れぞれ欠損させた結果、欠損によって硫化水素非 存在下での sqr の発現が高くなる遺伝子が1つ同 定された(図2)。欠損によって抑制能が失われ ることから、この遺伝子は sqr 遺伝子のリプレッ サーであると考えられ、sqrR(sqr repressor)と命 名した。

図 2. 同定した硫化水素応答性の制御因子SqrRの 欠損株におけるsqrプロモーター活性

Control は *sqr::lac*Z-fusion を保有する野生株。誘導 をかけていない細胞(白色)と終濃度 0.6 mM Na₂S による誘導を 4 時間かけた細胞(灰色)での測定 結果を示す。

最近、黄色ブドウ球菌 Staphylococcus aureus に おいて、硫化水素応答性の転写因子 CstR が同定 された⁸⁾。CstR は CsoR/RcnR ファミリーに属し、 今回同定した SqrR は ArsR/SmtB ファミリーに属 するため、CstR と SqrR は全く異なるタンパク質 である。*R. capsulatus* も *cstR* ホモログを 2 つ持つ が、それぞれ formaldehyde 感受性リプレッサー FrmR とニッケル感受性リプレッサーRcnR に近 縁であることが系統解析よりわかった^{9,10)}。実際 に、2 つの *cstR* ホモログの単一欠損および二重欠 損株は、完全な硫化水素応答能を保持していた。 これより、*R. capsulatus* において、SqrR が主要な 硫化水素センサーであると考えられた。

3. SqrR の硫化水素検知機構の解析

SqrR が硫化水素に応答する分子機構を解明す るために、大腸菌で大量発現させた R. capsulatus SqrR のリコンビナントタンパク質を精製し、そ の生化学的性質を解析した。DNase I フットプリ ントアッセイによって sqr プロモーター領域にお ける SqrR の結合領域を決定したところ、-10 と 転写開始点を含む領域に結合することがわかり、 SqrR がリプレッサーであることが明白となった。 SqrR は硫化水素に応じてオペレーターへの DNA 結合親和性を変化させると考えられたため、決定 したオペレーター領域に対する DNA 結合親和性 をゲルシフトアッセイによって測定した。S. aureus CstR は硫化水素イオンには応答せず、活 性イオウ分子種 (RSS; Reactive sulfur species) に 応答すると報告されている⁸⁾。RSS は、酸化され た非常に反応性の高いイオウ含有分子種で、生体 内では硫化水素自身もしくは硫化水素と別の分 子との反応によって産生される^{11,12)}。本研究では、 グルタチオンと硫化水素の反応によって産生さ れる RSS であるグルタチオンパースルフィド (GSSH)を *in vitro* 実験に用いた。嫌気条件下で、 還元型 SqrR と GSSH 処理 SqrR の *sqr* オペレー ターへの DNA 結合親和性を測定したところ、 GSSH 処理によって結合親和性が有意に低下し た (図 3A)。このことはパースルフィド存在下 で SqrR がオペレーターから解離しやすくなるこ とを示唆している。

RSS によるシグナル伝達には Cys 残基の SH 基 の 修 飾 が 関 与 し て い る と 考 え ら れ る 。 *R*. *capsulatus* SqrR は 3 つの Cys 残基 (Cys9, Cys41, Cys107)を持ち、そのうちの2つ(Cys41とCys107) は異なる細菌種の SqrR ホモログ間に保存されて いた。これら Cys 残基が RSS 応答に関わるか検 証するために、各 Cys 残基を Ser 残基に置換した 点変異 SqrR を用いて同様の解析を行った。その 結果、C9S SqrR は DNA との結合親和性は全体と して大きく低下したが、RSS に対する応答は保持 していた(図 3B)。一方、C41S SqrR と C107S SqrR はRSS 処理を受けても DNA 結合親和性は高いま まだった(図 3C, D)。この結果は、*sqrR* 点変異 株を用いた *in vivo* 解析結果とも一致した(図4)。 C9S は WT 同様に硫化水素イオンに応答して抑 制が解除されたが、C41S と C107S は硫化水素イ オン存在下でも抑制状態が維持されていた。これ より、SqrR の硫化水素応答には、RSS による Cys 残基の修飾が重要であることがわかった。

GSSH による SqrR の Cys 残基の化学修飾を同 定するために、LC-ESI-MS によって GSSH 処理

図 3. ゲルシフトアッセイによるSqrRのsqrプロモーターへのDNA結合親和性 嫌気条件下での還元型 SqrR(白丸)とGSSH 処理 SqrR(黒丸)の結合曲線。A-D はそれぞれ、WT SqrR, C9S SqrR, C41S SqrR, C107S SqrR の結合曲線を示す。

図 4. sqrR各点変異株におけるsqrプロモーター活性 *R. capsulatus*のゲノム上のsqrR遺伝子の3'末端に FLAGをコードする配列を付加した。各点変異株は *sqrR*:FLAG変異株をもとに作成した。図2と同様の手 順で測定した。

したときの C9S SqrR の分子量変化を測定した (図 5)。この測定では、還元型とGSSH 処理の ほかに、還元型グルタチオン(GSH)、酸化型グ ルタチオン(GSSG)、Na₂S で処理した C9S SqrR の解析も行った。C9S SqrR は細胞内で硫化水素 応答活性を WT 同様に持つ(図 4)。そこで本解 析では、SqrR の酸化的二次化学反応の影響を最 小限に抑えるために、C9S SqrR を本解析に用い

図 5.C9S SqrRのLC-ESI-MS解析

単量体 C9S SqrR (12,196 Da)が GSSH 処理以外で観察 された。GSSH 処理では主にテトラスルフィド結合形 成 C9S SqrR (12,358 Da)が観察された。少量 (≤5%) のトリサルファイド結合形成 C9S SqrR も観察され た。

た。還元型 C9S SqrR では、推定分子量 12,296 Da と完全に一致するシグナルが得られたことから、 修飾を受けておらず、Cys 残基は完全に還元され ていることが裏付けられた。さらに、GSH、GSSG、 Na₂S で処理した場合も変化がなかった。一方、 GSSH で処理した場合には、+62 Da (M, 12,358 Da) の分子量シフトが観察された。この変化(+62) は、硫黄原子2個の付加(+64)と水素原子2個 の消失(-2)で算定される値とよく一致するため、 Cys41 と Cys107 の間で分子内テトラスルフィド 結合を形成していることを示唆する。加えて、+30 Da (M_r 12,326 Da)の小さな変化も観察され、分子 内トリスルフィド結合も示唆された。ESI-MS/MS でトリプシン処理した GSSH 処理 C9S SqrR を分 析したところ、同一分子内の Cys41 と Cys107 の 間でトリスルフィドとテトラスルフィド結合を 形成していることが示された。同様の結果はWT SqrR でも得られた。

Cys41 と Cys107 が硫化水素処理によって修飾 を受けることを *in vivo* で確かめるために、チオー ル基修飾試薬の AMS で処理した総タンパク抽出 液を用いてウェスタンブロッティングを行った。 テトラスルフィド結合を形成している Cys 残基 は AMS では修飾されないため、AMS 修飾による 電気泳動での移動度の変化は、フリーのチオール 基の数にのみに依存する。対照の SqrR:FLAG に 対する Na₂S 無処理サンプルの分子量増加 (2.4 kDa) は処理サンプルの分子量増加 (0.8 kDa) の およそ 3 倍であることが観察された (図 6) 。こ れより、硫化水素イオン処理によってフリーのチ オール基が 3 つから 1 つになると考えられた。こ

図 6.*in vivo*でのSqrRのCys残基の修飾の検出 Cys 残基の SH 基が AMS 修飾をうけることで生じる 電気泳動度シフトから、SqrR の Cys 残基のフリーの SH 基数を定量した。細胞を硫化水素で処理すること で、2.4 kDa 分のシフトが 0.8 kDa 分のシフトに減少

した。

図 7. SqrRによる硫化水素応答性遺伝子群 (Sulfide-responsive genes; SRGs)の転写制御機構 のモデル

の実験からは、Cys41 と Cys107 の架橋は同定で きないが、*in vitro* の実験からこれら 2 つのシス テイン残基の間で GSSH による架橋が形成され ることが示されているため、*in vivo* でも内在性の 硫化水素によって生成された RSS によって SqrR は 2 つのシステイン残基の間で架橋反応を起こ すと考えられた。

硫化水素応答性転写因子 SqrR は、硫化水素非存在下では、還元型としてオペレーター領域に結合して転写を抑制する。硫化水素存在下では、それに由来する RSS によって保存された Cys 残基

(Cys41 と Cys107)の間で分子内テトラスルフィ ド結合が形成され、オペレーター領域との結合親 和性が低下し、重複するプロモーター領域への RNA ポリメラーゼ結合が可能となり転写が活性 化される。このような分子機構で、硫化水素に応 答した転写制御を行っていることが明らかと なった(図7)。

4. おわりに

本研究では、硫化水素依存的な光合成の制御に 関わる因子の同定とその分子機構の解析を行っ た。その結果、硫化水素応答性の転写因子 SqrR を同定し、RSS によって形成される分子内テトラ スルフィド結合が転写調節に重要であることを 明らかにした。しかし、SqrR による制御機構が、 環境中での硫化水素濃度変動に対応するために どのくらい重要であるかはわからない。近年、環 境中の微生物群集におけるメタ解析が急速に進 んでいる。これらの技術と本研究の生理学的な成 果を合わせることで、環境変化に合わせた光合成 の進化の解明につながると期待している。

謝辞

本研究をまとめるにあたり、東京工業大学の増 田真二准教授には手厚いご指導を賜りました。深 く感謝いたします。また、本研究は、インディア ナ大学の David P. Giedroc 教授、Carl E. Bauer 教 授、Jiangchuan Shen 博士との共同研究によって行 いました。感謝いたします。

Received February 14, 2017; Accepted February 24, 2017; Published April 30, 2017

参考文献

- Schutz, M., Shahak, Y., Padan, E. and Hauska, G. (1997) Sulfide-quinone reductase from *Rhodobacter* capsulatus. J. Biol. Chem. 272, 9890–9894.
- Chen, Z., Koh, M., Driessche, G.V., Beeumen, J.J.V., Bartsch, R.G., Meyer, T.E., Cusanovich, M.A. and Mathews, F.S. (1994) The structure of flavocytochrome *c* sulfide dehydrogenase from a purple phototrophic bacterium. *Science* 266, 430– 432.
- Ogawa, T., Furusawa, T., Shiga, M., Seo, D. and Inoue, K. (2010) Biochemical studies of a soxF-encoded monomeric flavoprotein purified from the green sulfur bacterium *Chlorobaculum tepidum* that stimulates in vitro thiosulfate oxidation. *Biosci. Biotechnol. Biochem.* 74, 771–780.
- Sander, J. and Dahl, C. (2009) Metabolism of inorganic sulfur compounds in purple bacteria, in *The purple phototrophic bacteria* (Hunter, C.N., Daldal, F., Thurnaier, M.C. and Beatty, J.Y., Eds.) pp 595– 622, Springer, Dordrecht, the Netherlands.
- Griesbeck, C., Schutz, M., Schodl, T., Bathe, S., Nausch, L., Mederer, N., Vielreicher, M. and Hauska, G. (2002) Mechanism of sulfide-quinone reductase investigated using site-directed mutagenesis and sulfur analysis. *Biochemistry* 41, 11552–11565.
- Shimizu, T., Shen, J., Fang, M., Zhang, Y., Hori, K., Trinidad, J. C., Bauer C. E., Giedroc, D. P. and Masuda, S. (2017) The sulfide-responsive transcriptional repressor SqrR functions as a master regulator of sulfide-dependent photosynthesis. *Proc. Natl. Acad. Sci. USA.* in press (doi: www.pnas.org/cgi/doi/10.1073/pnas.1614133114)
- 7. Sganga, M.W. and Bauer, C.E. (1992) Regulatory factors controlling photosynthetic reaction center and

light-harvesting gene expression in *Rhodobacter* capsulatus. Cell 68, 945–954.

- Luebke, J.L., Shen, J., Bruce, K.E., Kehl-Fie, T.E., Peng, H., Skaar, E.P. and Giedroc, D.P. (2014) The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in *Staphylococcus aureus*. *Mol. Microbiol*. 94, 1343–1360.
- Osman, D., Piergentili, C., Chen, J., Sayer, L., Uson, I., Huggins, T., Robinson, N. and Pohl, E. (2016) The effectors and sensory sites of formaldehyde-responsive regulator FrmR and metal-sensing variant. J. Biol. Chem. 291, 19502– 19516.
- Higgins, K.A. and Giedroc, D.P. (2014) Insights into protein allostery in the CsoR/RcnR family of transcriptional repressors. *Chem. Lett.* 43, 20–25.
- Ida, T., Sawa, T., Ihara, H., Tsuchiya, Y., Watanabe, Y., Kumagai, Y., Suematsu, M., Motohashi, H., Fujii, S., Matsunaga, T., Yamamoto, M., Ono, K., Devarie-Baez, N.O., Xian, M., Fukuto, J.M. and Akaike, T. (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. *Proc. Natl. Acad. Sci. U. S. A.* 111, 7606– 7611
- Nishida, M., Sawa, T., Kitajima, N., Ono, K., Inoue, H., Ihara, H., Motohashi, H., Yamamoto, M., Suematsu, M., Kurose, H., van der Vliet, A., Freeman, B.A., Shibata, T., Uchida, K., Kumagai, Y. and Akaike, T. (2012) Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration," *Nat. Chem. Biol.* 8, 714–724.

The induction of an electron transport chain involved in sulfide oxidation: The identification and sulfide-responsive mechanism of transcriptional factor SqrR

Takayuki Shimizu*

Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology

研究紹介

光応答素子のための光化学系 I とカーボンナノチューブの複合体形成[§]

¹東京理科大学大学院 理学研究科,²東京大学大学院 理学系研究科, ³東京理科大学 工学部,⁴東京理科大学 理学部 二井 大輔^{1,*}, 宮地 麻里子²嶋田 友一郎³,野沢 陽佑⁴,伊藤 雅浩¹,本間 芳和¹, 池平 秀²,山野井 慶徳²,西原 寛²,鞆 達也¹

近年、光化学系 | (PS I) の光合成反応を活用したデバイス作製が盛んに行われている。これは光合成 反応の初期過程において、PS | 電子伝達反応の量子収率が 100%に近いことを利用するものである。 本研究では、導電性に優れた単層カーボンナノチューブ (SWNT) と PS | の複合体を作製し、PS | を励起することによって生じた電子を SWNT に伝達し、光エネルギーを電流に変換する素子を作製す ることを目的とした。本研究で用いた PS | は、還元側に遺伝子組換えにより炭素材料に特異的に結合 する配列を挿入し、配向性をもたせることにより、効率よく電子を取り出すことを可能にしている。 野生株の PS | との比較により、遺伝子改変した PS | は SWNT と複合体を形成し、光応答素子として 機能することを紹介する。

1. はじめに

炭素材料は、次世代素子の構成要素として有用 な可能性を秘めている。炭素材料としては、グラ ファイト、フラーレン、ダイヤモンド、カーボン ナノチューブ (CNT) そしてグラフェン等が存 在するが、本研究では単層カーボンナノチューブ (Single-Walled Carbon Nano Tube: SWNT) を用い た。SWNTの構造は、一枚のグラフェンを丸めた 構造をしており、その構造はカイラル指数により 決定され、金属性と半導体性のどちらかの性質を 持つ。SWNT の特徴として、フレキシブルで強靭 であり、また導電材料として一般的に使われてい る銅と比較して、約1000倍の高い電流密度耐性 (高導電性) を有しているため、センサーや電 子素子等への応用が考えられている。しかしなが ら、炭素材料は不溶性であり、この点が応用の際 の問題点であった。その中で、近年生体分子を SWNT の分散剤として用いることで可溶化する 多くの研究報告がある^{1,2)}。また SWNT は DNA

[§]第7回日本光合成学会シンポジウム ポスター発表賞受賞 論文 やタンパク質のような生体分子と複合体を形成 できることが知られている³⁻⁸⁾。SWNT 表面とタ ンパク質間の結合メカニズムについてはいくつ か報告がある。まず化学的な結合の例としてはタ ンパク質側鎖と表面を修飾した SWNT 間の相互 作用によるものがある^{9,10)}。また他の例として、 SWNT 表面とタンパク質の疎水性アミノ酸側鎖 間の疎水性相互作用によるものがある^{11,12)}。しか しながら、疎水性相互作用を活用する方法は、 SWNT 表面とタンパク質の吸着方向をコント ロールすることが出来ない問題点がある。複合体 化の別のアプローチとして、SWNT 表面にて生体 分子間の強い相互作用を利用する方法がある。こ の方法の一つとして、biotin-streptavidin の分子認 識能による化学的な反応を活用した例がある¹³⁾。

光化学系 (PS) I はシアノバクテリア、藻類、 高等植物中に存在する膜タンパク質複合体であ り、光駆動による電子伝達を行う。そして plastocyanin、もしくは cytochrome c_6 から電子を 受け取り ferredoxin へ効率よく伝達する機構をも つ。これらの特性から、ナノサイズの光電変換素

^{*}連絡先 E-mail: iidabashi2011@yahoo.co.jp

子の構成要素としての適合性が見出されている ¹⁴⁻¹⁷⁾。

PSI複合体はシアノバクテリアから三量体と して単離されるのに対して、高等植物からは単量 体として単離される。好熱性シアノバクテリア *Thermosynechococcus elongatus* そして高等植物の *Pea sativum* から単離された PSIの結晶構造は、 高分解能で報告されていることから、分子レベル の反応理解および操作が可能である¹⁸⁻²⁰⁾。近年の

遺伝子工学およびナノテクノロジーの発展により、PSIは白金、金粒子あるいはオンチップといった他のナノ材料と複合体化させることにより素子として活用されており^{15,21,22)}、例えば、電子伝達素子あるいは水素生成への応用が期待されている¹⁴⁻¹⁷⁾。

本研究で用いた、PSIとSWNTの複合体化は、 Phage display 法により同定した CNT に対して特 異的に結合する配列を介して形成される (CNTBP: CNT Binding Peptide)。本研究では、こ の配列を PS I の還元側に挿入した。この PS I に 挿入した配列は、CNT に対して高い親和性を 持っているため、SWNT 表面に配向性を有して結 合すると期待される。本研究では、実験材料とし てシアノバクテリア Synechocystis sp. PCC 6803 を 使用し、CNTBP は PsaE 中央付近のループ部位に 挿入した。この選定理由は、PsaE 近傍にフェレ ドキシンが結合し電子授与に関わっていること が結晶構造から示唆されているためである。従っ て、SWNT は光照射により PsaE に隣接した PsaC に結合している Fe-S クラスターから電子を直接 受け取ることが期待できる。

電極上に固定化された PS I からの光電流測定 は、様々な光合成生物や材料において多くの研究 がなされてきた²³⁻²⁵⁾。本研究では配向性を持たせ た PS I を SWNT 電極に結合させ、光照射により 電子の流れを検出することに成功した²⁶⁾。

2. カーボンナノチューブ結合配列の発現と PS I への挿入

論文共著者の嶋田らは、phage display 法を用いて 10⁹ 個の phage から CNT に対して高い結合性 を示した His-Met-Gly-Leu-Thr-Lys-Ile-His-TyrSer-Ala-Leu からなる 12 アミノ酸配列を同定し た。この CNTBP 配列を Synechocystis sp. PCC 6803 の PsaE ループ部位 Gly55-Val56 の間に挿入した 変異体を相同組み換えにより得た²⁷⁾ (図 1a)。 DNA のセグリゲーションは、PsaE の両側のプラ イマーを含んだ PCR 法より確認した (data not shown)。

コントロール及び遺伝子改変した Synechocystis sp. PCC 6803 株は 8 L ボトルにて BG11 で培養を行った。培養環境は 20 µmol photons m⁻² s⁻¹の蛍光灯下にて室温で行い、空気 をフィルター (Millex filter, Millipore, USA) を通 して供給した。それぞれの株からの PS I 複合体 の単離精製は、チラコイド膜を可溶化後、陰イオ ン交換クロマトグラフィーを用いて行った²⁸⁾。ま ず、細胞を 10 mM MgCl₂, 5 mM CaCl₂ そして 25% (w/v) glycerol を含む 50 mM 2-(N-morpholino) ethanesulfonic acid (MES)-NaOH buffer (pH 6.0) 中にて懸濁し、その後ガラスビーズを用いて 破砕した。チラコイド膜は遠心分離により回収し、 その後、2% n-dodecyl-β-D-maltoside (DM) を用い て、277 Kで10分間可溶化を行った。遠心分離 後、その溶液の上清を 50 mM Tris-HCl (pH 7.2), 0.04% DM, 30 mM NaCl にて平衡化した陰イオン 交換カラムに供した (DEAE Toyopearl, TOSOH, Japan)。 単離 PS I は、NaCl (30-400 mM) 濃度勾 配によりカラムから溶出した。

図 1b は精製された PS I の SDS-PAGE を示して いる。図中の Lane 1 はコントロール PS I、 Lane 2 は CNTBP を PsaE に挿入した PS I (以後 PS I-CNTBP と呼ぶ) をそれぞれ示す。その結果、PS I-CNTBP において PsaE のバンドがコントロール PS I と比べアップシフトをしており、PsaE に特 異的な結合配列が挿入されていることが SDS-PAGE からも確認できた。

3. 吸収スペクトル測定による SWNT と PSI の複 合体化の確認

PSIとSWNTの複合体化の確認は、吸収ス ペクトルの測定、透過型電子顕微鏡観察(TEM)、 SWNTのフォトルミネッセンスにより評価した。 吸収スペクトルによる測定は、PSIとSWNTの

図1.PSIへのカーボンナノチューブ結合配列 (CNTBP) の挿入部位 (a) とSDS-PAGE による精製したPSI の組成の確認 (b) Lane 1: コントロール PSI、Lane 2: PSI-CNTBP

混合溶液を密度勾配遠心分離により、PSIと SWNT が複合体形成しているものと複合体形成 していない PSIを分離することで評価した。

本研究で用いた SWNT は、HiPco 法(高圧一酸 化炭素法) で作製されたものであり、OPTO SCIENCE, INC. (Tokyo, Japan) から購入した。こ の SWNT の直径は、Raman 分光測定から直径が 約 0.8–1.2 nm であることを確認している。SWNT 懸濁液作製方法は以下の通りである。1.0 mg の HiPco SWNT を 2% (w/v) Triton X-100 溶液 1 mL と混合し、氷水中で 90 分間超音波処理 (on 1 s, off 1 s) を行った。その後超音波処理した溶液を 1 時間遠心分離 (18,000 × g) し、沈殿を除いた上 清を分取した。この SWNT 懸濁液を全ての実験 で用いた。

PS I と SWNT の結合は、PS I と SWNT 懸濁液 を phosphate buffer [10 mM phosphate (pH 7.4), 0.04% DM]、もしくは MES buffer [10 mM MES (pH 6.0), 0.04% DM] 中にて混合し作製した。本 実験で用いたサンプルの混合後の PS I 最終濃度 は 0, 10, 20, 30, 50, 70, 100 µg Chl mL⁻¹であり、 SWNT の最終濃度は 0, 50, 100 µg mL⁻¹ とした。混 合後、PSIとSWNTの溶液を暗所で277Kにて1 時間インキュベートをすることにより、複合体形 成を行った。

密度勾配遠心分離は、非イオン性の密度勾配溶 液 (OptiPrep: iodixanol 水溶液, Sigma-Aldrich)²⁹⁾ を使用し、勾配は遠心分離チューブ内にてステッ プグラジエント法にて作製した。まず、200 μ L の 60 % (w/v) iodixanol を遠心チューブの底に加 え、その上に 20 % (w/v) iodixanol を 1.8 mL を加 えた。その後、作製した勾配溶液の上層に 100 μ L の PS I もしくは PS I と SWNT の混合溶液 (iodixanol 無し) を加えた。

吸収スペクトル測定用のサンプル作製手順は 以下の通りである。コントロールとしての PS I のみの溶液と、コントロール PS I もしくは PS I-CNTBP との SWNT 混合溶液を 30 分間 80,000 × g にて遠心分離 (Himac CS100GX II, Hitachi Koki, Tokyo, Japan) した。遠心分離後、上層部の PS I バンドを分取し、室温にて分光光度計 (JASCO V-660, Tokyo, Japan) を用いて吸収スペクトルを 測定した。 PS I の SWNT への吸着評価として、PS I と SWNT 混合液を用いたときの PSI バンドの濃度 (C_m) とコントロール PS I のみの場合の濃度 (C_p) を、それぞれのサンプルの吸光度から決定した。 PS I と SWNT との平衡溶液における遊離 PS I の 濃度 (E_c) と PS I 吸着量 (A)は式 (1), (2) にて算 出した。

$$E_c = I_c \times C_m / C_p \tag{1}$$

$$A = (I_c - E_c) \times V/A_s \tag{2}$$

 I_c は PS I の初期濃度、V はサンプルの体積、そして A_s は SWNT の添加量である。

図 2 は、MES buffer (pH 6.0) 中にてコントロー ル PS I もしくは PS I-CNTBP (50, 70, 100 μ gChl mL⁻¹) と SWNT (50 μ g mL⁻¹) を混合したときの 遠心分離後の写真である。上述した遠心分離条件 では、遠心分離後に SWNT は沈殿する。従って、 もし PS I と SWNT が複合体化しているならば、 PS I は沈殿することが期待される。図 2c の PS I-CNTBP と SWNT の混合溶液の場合、吸着して いない PS I を示す上層部のバンドが他の溶液の 場合と比べ薄まっており、SWNT 表面に PS I が 吸着し多くが沈殿していることが示唆される。

図3は、分取した上層部のPSIバンドの吸光 度測定から算出したコントロール PS I と PS I-CNTBP の SWNT 表面への吸着特性である。 Phosphate buffer (pH 7.4) の場合(図 3a)、配列 が無い場合でもわずかな吸着は見られるが、PS I-CNTBPの濃度依存の吸着が示された。従って、 PSIに挿入した CNTBP が有効に機能しているこ とが示唆される。一方で、MES buffer (pH 6.0)の 場合では、Phosphate buffer (pH 7.4) の場合と同様 に PS I の濃度依存の吸着が得られ、また吸着量 が増加した(図 3b)。しかしながら、コントロー ル PS I の場合も吸着量が増加し、また吸着量に 大きなばらつきが得られたため、pH 変化にとも ない表面電荷が変化することで非特異的な吸着 が生じたことが示唆された。この非特異的な吸着 の増加は、素子として応用する際に問題となるこ とが考えられる。

図 2. 密度勾配遠心分離による SWNT に吸着し ていない PSIの分離

a: PS I, b: SWNT+コントロール PS I, c: SWNT+ PS I-CNTBP. 各レーンの PS I の濃度は、左から 50, 70, 100 μ gChl mL⁻¹である。

図 3. PS I の SWNT への (a) Phosphate (pH 7.4) 及び (b) MES buffer (pH 6.0) 中での吸着特性 赤色: コントロール PS I、青色: PS I-CNTBP

4. 透過型電子顕微鏡観察による SWNT 表面への PSIの吸着評価

TEM 観察は、Hitachi HF-2000 を用いて行った。 使用したグリッドは、サンプル滴下前に親水化処 理を行ったものを用いた。サンプルは buffer にて 100 倍希釈した後にグリッドに滴下し、その後 1 時間真空引きを行った。画像は加速電圧 75 kV に て得た。

図 4 は、溶液を Phosphate buffer (pH 7.4) とした 場合の SWNT (a) と PS I-CNTBP と SWNT の複 合体 (b) の TEM 画像である。画像として SWNT は棒状のものとして確認できた。また PS I のサ イズ (20 nm) は、PS I の結晶構造から明らかと なっている¹⁸。PS I-CNTBP と SWNT の混合溶液 の場合では、SWNT 表面のまわりに 20 nm サイ ズの粒子が確認できることから(図 4b)、PS I が SWNT に吸着していることを確認した。

5. SWNT のフォトルミネッセンスの変化による PS I の吸着評価

フォトルミネッセンス測定は、NIR photoluminescence spectrometer (Shimadzu NIR-PL system)を用いて行った。励起波長は400–500 nm とし、1000–1600 nm の領域のフォトルミネッセ ンスを測定した。フォトルミネッセンスはSWNT のユニークな特徴の一つであり、孤立分散された SWNT は、近赤外領域にて発光を示す。

図 5 は、溶液を MES buffer (pH 6.0)とし、SWNT 懸濁液 (100 μ g mL⁻¹) とその溶液にコントロー μ PS I もしくは PS I-CNTBP (100 μ gChl mL⁻¹) を 混合した場合における励起波長を変えながら観 測したフォトルミネッセンス強度マップである。 SWNT は、直径や SWNT 表面の環境により励起・ 発光波長が異なるが ³⁰⁻³²、本実験で用いた SWNT

図 5.SWNT の励起波長 400-500 nm におけるフォ トルミネッセンス強度マップ

a: SWNT, b: SWNT+コントロール PS I, c: SWNT+ PS I-CNTBP. 各サンプルの SWNT の濃度は 100 μ g mL⁻¹, PS I の濃度は 100 μ gChl mL⁻¹ である。

図 4.SWNT のみ (a) 及び PS I-CNTBP と SWNT の複合体 (b) の TEM 画像

図 6. SWNT 電極に吸着させた (a) PS I-CNTBP 及び (b) PS I (50 µgChl) からの光応答(露光時間:10 sec on/off cycles) (c) 光電流測定中の電子伝達経路(数字はそれぞれの還元電位)及び PS I からの電流生成のメカニズム SWNT 電極 (50 µg) への PS I 添加量は 50 µgChl である。

は、600-850 nm の励起光で、1000-1400 nm の発 光が得られる。しかし、我々は PS I の SWNT へ の吸着状態を確認するため、クロロフィル a の ソーレー帯の吸収ピークに相当する領域での光 応答に注目した。SWNT 懸濁液の場合では、400-500 nm の励起領域では 1100 nm と 1280 nm で SWNT の発光が得られた(図 5a)。従って、も し PS I が SWNT 表面と強い相互作用を持ってい るならば、この励起光領域の光は、PS I により SWNT の発光に影響を及ぼすことが考えられる。

図 5b は、SWNT とコントロール PS I の混合溶 液の場合の測定結果である。この場合も同様に 1100 nm と 1280 nm で SWNT の発光が得られた が、ソーレー帯の吸収に相当する 400-425 nm の 領域では発光が消光していることが分かる。これ は PS I により励起光のエネルギーが吸収されて いるためと考えられる。一方で、SWNT と PS I-CNTBP の混合溶液の場合では、コントロール PS I と比べ 1000-1300 nm に新たな幅の広い発光 を観測した(図 5c)。このことは、PS I から SWNT に電子あるいはエネルギーの伝達があることを 示唆している。

6. PS I と SWNT で構成された素子の光応答によ る PS I の配向性の評価

上述した結果から、PS I-CNTBP においては、 挿入した CNTBP を介した SWNT への吸着が確認 できた。最後にその PS I の SWNT 表面への配向 性を確認するため、SWNT を電極とした光応答素 子を作製し、光照射により生じる PS I からの光 電流により、PS I の SWNT 表面への配向性の評 価をした。

全ての測定は室温にて行った。励起光はハロゲ ンランプ (150 W) からグラスファイバーを介し て供給し、光照射時に生じる光電流はデジタルマ ルチメータ (34401A, Keysight Technologies, Santa Rosa, CA) を用いて測定した。素子の構成は、 FTO 導電性ガラス (11 Ω cm⁻², Peccell Technologies, Inc., Kanagawa, Japan) を作用電極

とし、Pt /Indium Tin Oxide (ITO) film (15 Ω cm⁻² Peccell Technologies, Inc., Kanagawa, Japan) を対

極として用いた。作用電極は、SWNT 懸濁液を FTO 導電性ガラスに 50 µL (0.5 mg mL⁻¹) 滴下し (液滴面積 1.2 × 1.2 cm)、473 K で 20 分間焼結 させる工程を2回行い作製した。その後、100 µL の PS I 溶液 (50 µgChl) を SWNT 電極に滴下し、 暗所で277Kにて12-16時間インキュベートした。 光電流測定前に、電解液を構成する phosphate buffer (pH 7.4) を電極に滴下し、吸着していない 過剰な PS I を除いた。二つの電極間に電解液を 満たすため両面テープ (厚さ 0.1 mm) を用いて 空間を作り接着を行った。電極間に注入する電解 液は、phosphate buffer (pH 7.4) 中に電子供与体と して Phenazine methosulfate (PMS) を含んだ溶液 とした。その後、二つの電極は、両面テープに加 えて瞬間接着材エポキシを用いて両者を接着さ せた。

作製した素子に対し、光を照射することで電流 応答を測定した。この時、PSI-CNTBP(図 6a) と コントロール PSI(図 6b)において発生する光 電流に明らかな相異が確認できた。PSI-CNTBP の場合では、10秒間隔で明と暗を移行させる非 連続な光照射により、それぞれの明暗移行後に、 素早い逆電流が生じた(図 6a)。一方、コント ロール PSIの場合では、電流値の変化がそれぞ れの明暗移行の後に確認できなかった(図 6b)。 以上の結果から、PSI-CNTBPの場合、CNTBPが 挿入されている PSIの還元側が電極上に吸着し、 コントロール PSIは、SWNT電極上に吸着して いない、もしくは配向していないことが示唆され る。

図 6c は、作製した素子に含まれる PS I 電子伝 達成分、および還元メディエーターとしての PMS の還元電位と素子内部の電子伝達経路を示 す。SWNT 電極の酸化還元電位の値は参考文献を 参照した ³³⁻³⁵。PMS からの電子は、PS I の反応中 心から A₀, A₁, F_x, F_A/F_Bを経由して Fe-S cluster に 伝達される。その後、PS I の還元された Fe-S cluster 側が SWNT 電極と吸着していることから、 SWNT 電極に直接電子が伝達される。SWNT 電 極に到達した電子は Pt/ITO 電極伝達され、そし て Pt/ITO 電極の電子により PS I に電子を供与し た PMS⁺が還元される。これにより、暗状態に移 行するまで逆電流が生成される。

7. おわりに

私達は、CNT に対して高い親和性を持つ CNTBP を PS Iの PsaE サブユニットに挿入し、 PS I-SWNT 複合体を作製した。我々の得た結果 は、明らかに CNTBP を介した PS I と SWNT の 複合体が作製されていることを示した。そして、 その PS I は SWNT 表面と意図した向きで吸着し ていることを実証した。PS I と SWNT の複合体 においては、高効率な電子伝達システムの構築が 期待できる。また、今後この遺伝子改変による複 合体化の手法は、他の種を含めた PS I あるいは PS II とナノ材料を組み合わせる方法として有効 であると考えられる。

謝辞

本研究の一部は、文部科学省科研費 (26220801)の補助を受けて行われました。今回 本稿執筆の機会を与えてくださいました日本光 合成学会ならびに編集委員会の方々に御礼申し 上げます。

Received February 25, 2017; Accepted March 11, 2017; Published April 30, 2017

参考文献

- Zheng, M., Jagota, A., Semke, E.D., Diner, B.A., McLean, R.S., Lustig, S.R., Richardson, R.E. and Tassi, N.G. (2003) DNA-assisted dispersion and separation of carbon nanotubes. *Nat. Mater.* 2, 338– 342.
- Nakashima, N., Okuzono, S., Murakami, H., Nakai, T. and Yoshikawa, K. (2003) DNA dissolves single-walled carbon nanotubes in water. *Chem. Lett.* 32, 456–457.
- Saifuddin, N., Raziah, A.Z. and Junizah, A.R. (2012) Carbon nanotubes: a review on structure and their interaction with proteins. *J. Chem.* 2013.
- Ito, M., Yajima, H. and Homma, Y. (2016) Strain effect of cellulose-wrapped single-walled carbon nanotubes measured by photoluminescence and Raman scattering spectroscopy. *Jpn. J. Appl. Phys.* 55, 075101.

- Kam, N.W.S. and Dai, H. (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. *J. Am. Chem. Soc.* 127, 6021–6026.
- Yang, W., Thordarson, P., Gooding, J.J., Ringer, S.P. and Braet, F. (2007) Carbon nanotubes for biological and biomedical applications, *Nanotechnology* 18, 412001.
- Nii, D., Hayashida, T., Yamaguchi, Y., Ikawa, S., Shibata, T. and Umemura K. (2014) Selective binding of single-stranded DNA-binding proteins onto DNA molecules adsorbed on single-walled carbon nanotubes. *Colloids Surf. B*, 121, 325–330.
- Umemura, K. (2015) Hybrids of nucleic acids and carbon nanotubes for nanobiotechnology. *Nanomaterials* 5, 321–350.
- Tasis, D., Tagmatarchis, N., Bianco, A. and Prato, M. (2006) Chemistry of carbon nanotubes. *Chem. Rev.* 106, 1105–1136.
- Qi, H., Ling, C., Huang, R., Qiu, X., Shangguan, L., Gao, Q. and Zhang, C. (2012) Functionalization of single-walled carbon nanotubes with protein by click chemistry as sensing platform for sensitized electrochemical immunoassay. *Electrochim. Acta.* 63, 76–82.
- Chen, R.J., Zhang, Y., Wang, D. and Dai, H. (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838–3839.
- Matsuura, K., Saito, T., Okazaki, T., Ohshima, S., Yumura, M. and Iijima, S. (2006) Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. *Chem. Phys. Lett.* 429, 497– 502.
- Liu, Z., Galli, F., Janssen, K.G., Jiang, L., van der Linden, H.J., de Geus, D.C., Voskamp, P., Kuil, M.E., Olsthoorn, R.C., Oosterkamp, T.H., Hankemeier, T. and Abrahams, J.P. (2010) Stable single-walled carbon nanotube–streptavidin complex for biorecognition. J Phys Chem C. 114, 4345–4352.
- Ciesielski, P.N., Scott, A.M., Faulkner, C.J., Berron, B.J., Cliffel, D.E. and Jennings, G.K. (2008) Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I. ACS Nano 2, 2465–2472.
- Terasaki, N., Yamamoto, N., Hiraga, T., Yamanoi, Y., Yonezawa, T., Nishihara, H., Ohmori, T., Sakai, M., Fujii, M., Tohri, A., Iwai, M., Inoue, Y., Yoneyama, S., Minakata, M. and Enami, I. (2009) Plugging a

molecular wire into photosystem I: reconstitution of the photoelectric conversion system on a gold electrode. *Angew. Chem. Int. Ed.* 48, 1585–1587.

- Iwuchukwu, I.J., Vaughn, M., Myers, N., O'Neill, H., Frymier, P. and Bruce, B.D. (2010) Self-organized photosynthetic nanoparticle for cell-free hydrogen production. *Nat. Nanotechnol.* 5, 73–79.
- Mershin, A., Matsumoto, K., Kaiser, L., Yu, D., Vaughn, M., Nazeeruddin, M.K., Bruce, B.D., Graetzel, M. and Zhang, S. (2012) Self-assembled photosystem-I biophotovoltaics on nanostructured TiO₂ and ZnO. *Sci. Rep.* 2, 234.
- Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W. and Krauß, N. (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. *Nature* 411, 909–917.
- Mazor, Y., Borovikova, A. and Nelson, N. (2015) The structure of plant photosystem I super-complex at 2.8 Å resolution. *eLife* 4, e07433.
- Qin, X., Suga, M., Kuang, T. and Shen, J.R. (2015) Structural basis for energy transfer pathways in the plant PSI–LHCI supercomplex. *Science* 348, 989– 995.
- Kaniber, S.M., Brandstetter, M., Simmel, F.C., Carmeli, I. and Holleitner, A.W. (2010) On-chip functionalization of carbon nanotubes with photosystem I. J. Am. Chem. Soc. 132, 2872–2873.
- Miyachi, M., Yamanoi, Y., Shibata, Y., Matsumoto, H., Nakazato, K., Konno, M., Ito, K., Inoue, Y. and Nishihara, H. (2010) A photosensing system composed of photosystem I, molecular wire, gold nanoparticle, and double surfactants in water. *Chem. Commun.* 46, 2557–2559.
- Nguyen, K. and Bruce, B.D. (2014) Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion. *Biochim. Biophys. Acta.* 1837, 1553– 1566.
- 24. Ravi, S.K. and Tan, S.C. (2015) Progress and perspectives in exploiting photosynthetic biomolecules for solar energy harnessing. *Energy Environ. Sci.* 8, 2551–2573.
- Miyachi, M., Yamanoi, Y., Tomo, T. and Nishihara, H. (2016) Cross-sectional TEM analysis of an ITO coated with photosystem I and molecular wires. J. Inorg. Organomet. Polym. 26, 1309–1312.
- Nii, D., Miyachi, M., Shimada, Y., Nozawa, Y., Ito, M, Homma, Y., Ikehira, S., Yamanoi, Y., Nishihara, H. and Tomo, T. (2017) Conjugates between

photosystem I and a carbon nanotube for a photo response device. *Photosynth. Res.* (doi 10.1007/s11120-016-0324-0).

- Vermaas, W. (1996) Molecular genetics of the cyanobacterium *Synechocystis* sp. PCC 6803: principles and possible biotechnology applications. *J. Appl. Phycol.* 8, 263–273.
- Tomo, T., Akimoto, S., Tsuchiya, T., Fukuya, M., Tanaka, K. and Mimuro, M. (2008) Isolation and spectral characterization of photosystem II reaction center from *Synechocystis* sp. PCC 6803. *Photosynth. Res.* 98, 293–302.
- Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I. and Hersam, M.C. (2006) Sorting carbon nanotubes by electronic structure using density differentiation. *Nat. Nanotechnol.* 1, 60–65.
- Miyauchi, Y., Saito, R., Sato, K., Ohno, Y., Iwasaki, S., Mizutani, T., Jiang, J. and Maruyama, S. (2007) Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials. *Chem. Phys. lett.* 442, 394–399.
- Ohno, Y., Iwasaki, S., Murakami, Y., Kishimoto, S., Maruyama, S. and Mizutani, T. (2007) Excitonic

transition energies in single-walled carbon nanotubes: Dependence on environmental dielectric constant. *Phys. Stat. Sol. b* 244, 4002–4005.

- 32. Chiashi, S., Watanabe, S., Hanashima, T. and Homma, Y. (2008) Influence of Gas Adsorption on Optical Transition Energies of Single-Walled Carbon Nanotubes. *Nano Lett.* 8, 3097–3101.
- Tanaka, Y., Hirana, Y., Niidome, Y., Kato, K., Saito, S. and Nakashima, N. (2009) Experimentally Determined Redox Potentials of Individual (n, m) Single-Walled Carbon Nanotubes. *Angew. Chem. Int. Ed.* 48, 7655–7659.
- Paolucci, D., Franco, M.M., Iurlo, M., Marcaccio, M., Prato, M., Zerbetto, F., Pénicaud A. and Paolucci, F. (2008) Singling out the Electrochemistry of Individual Single-Walled Carbon Nanotubes in Solution. J. Am. Chem. Soc. 130, 7393–7399.
- Kim, K.K., Yoon, S.-M., Park, H.K., Shin, H.-J., Kim, S.M., Bae, J.J., Cui, Y., Kim, J.M., Choi, J.-Y. and Lee, Y.H. Doping Strategy of Carbon Nanotubes with Redox Chemistry. *New J. Chem.* 2010, 34, 2183– 2183.

Complex formation between photosystem I and a carbon nanotube for a photo-conversion device

Daisuke Nii¹*, Mariko Miyachi^{2,} Yuichiro Shimada³, Yosuke Nozawa⁴, Masahiro Ito¹, Yoshikazu Homma¹, Shu Ikehira², Yoshinori Yamanoi², Hiroshi Nishihara², Tatsuya Tomo¹

¹Department of Physics, Graduate School of Science, Tokyo University of Science, ²Department of Chemistry, School of Science, The University of Tokyo, ³Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, ⁴Department of Physics, Faculty of Science, Tokyo University of Science

解説特集 光化学系の構造・モデル計算から見えてきた 光合成反応の妙

Editors: 得津 隆太郎(基礎生物学研究所 環境光生物学研究部門) 柏山 祐一郎(福井工業大学 環境情報学部)

解説 X線自由電子レーザーを利用したタンパク質高分解能無損傷構造解析平田 邦生(理研・放射光科学, JST/CREST) 33

解説Photosystem II における水素結合ネットワークを介したプロトン移動斉藤 圭亮(東京大)39

 解説
 植物の光化学系 I-集光性アンテナ複合体 I 超複合体の結晶構造とエネルギー伝達の構造基盤

 菅 倫寛(岡山大)
 48

解説特集

序文‡

基礎生物学研究所 環境光生物学研究部門

得津 隆太郎¹

福井工業大学 環境情報学部

柏山 祐一郎²

地球上に生きる多くの生物は、その活動のためのエネルギーを太陽光エネルギーに依存していま す。特に、酸素発生型光合成は、水分子を電子供与体とすることで地球内部からの還元力に依存する 必要のないエネルギー変換の仕組みであって、地球生命圏のエネルギーフローのあり方を決定づけて きたといえるでしょう。すなわち、酸素発生型光合成によって地球上に豊富な酸素と有機物が蓄えら れ、多くの生物はこれら光合成産物の化学ポテンシャルをエネルギー源として活動しています。この ような観点からも、酸素発生型光合成は、その誕生から28億年にわたり、地球環境の形成に最も大き な影響を与えた生化学プロセスであると言えます。

ところで、光合成の根幹の一つをなす光化学反応は、酸素発生型光合成においては光化学系IIおよび光化学系Iと呼ばれる2つの光化学系を中心として駆動されています。これら光化学系の研究の歴史は古く、先人たちの研究の積み重ねにより、その構造・機能が次第に明らかになってきました。特に、近年の目覚ましいX線結晶構造解析技術の向上に伴い原子分解能に近い光化学系の超分子構造が明らかとなり、光合成研究分野のみならず他分野・社会的にもインパクトの大きい研究成果が続々と発表されています。その一方で、構造生物学分野以外の光合成研究者にとっては、構造解析の手法や構造情報に基づく化学反応に関する議論などを完全に理解することは困難になりつつあると思います。このような背景を受けて、2016年5月に東京理科大学にて開催された第7回日本光合成学会・公開シンポジウム1『光化学系の構造・モデル計算から見えてきた光合成反応の妙』では、大型放射光施設SPring-8を利用した結晶構造解析の技法、それにより明らかになった光化学系IIおよび光化学系Iの分子構造、さらにはそれらの構造情報をふんだんに利用した構造・理論解析の手法について、4名の研究者に講演をしていただきました。いずれの講演も、構造生物学分野外のシニア研究者はもちろん、多くの若手研究者にとって分かりやすい内容であったのではないかと思います。

本特集では、シンポジウムの限られた時間では伝わりきらなかった部分も含めた研究内容について、 3名の講演者に改めて解説をお願いしました。本特集が、一人でも多くの光合成研究者にとって、新た な興味・発想を生み出すきっかけとなれば幸いです。

最後に、本特集の編纂に当たってご尽力いただいた本紙編集長の伊福 健太郎先生にこの場を借りて お礼を申し上げます。

^{*}解説特集「光化学系の構造・モデル計算から見えてきた光合成反応の妙」

¹連絡先 E-mail: tokutsu@nibb.ac.jp

²連絡先 E-mail: ykas8787@gst.ritsumei.ac.jp

X線自由電子レーザーを利用したタンパク質高分解能無損傷構造解析[‡]

理化学研究所・放射光科学総合研究センター、JST/CREST平田 邦生*

ここ数年でX線を用いたタンパク質の結晶構造解析は著しい変化を迎えたといえる。それはX線自由 電子レーザー(以下 XFEL)の利用開始による種々の技術革新によるものと言って良いだろう。XFEL という新しい X線プローブがタンパク質結晶構造解析に新しい価値を与え始めている。我々も SPring-8に併設された XFEL 施設である SACLA(SPring-8 Angstrom Compact Free Electron Laser)を 用い、金属含有タンパク質であるウシ心筋シトクロム酸化酵素の「あるがままの構造をより詳細に」 捉えることに成功した。従来のタンパク質結晶構造研究と、XFEL 施設を用いたそれの違いを比較しな がら、タンパク質結晶構造解析に XFEL を用いる利点について紹介する。

1. はじめに:研究の背景

生命活動はタンパク質が関わる化学反応に よって担われており個々のタンパク質の機能や その発現のメカニズム解明は古くから重要な研 究対象である。タンパク質の機能をより深く理解 するために立体構造情報は必要不可欠な情報で あり、数ある構造解析手法の中でもタンパク質 X 線結晶構造解析は高分解能立体構造を取得する ための強力な手法の一つであると言って良い。タ ンパク質結晶構造解析は結晶中に規則的に並ん だ原子によって回折されたX線回折強度から電 子密度図を得ることにより結晶単位胞内の原子 配列(結晶構造)を決定する手法である。回折像 はブラッグの条件を満たす回折点によって構成 され、結晶方位を変化させれば条件を満たす回折 斑点が変化する。立体構造を決定するためには連 続的に結晶を動かしその回折像を三次的に記録 する必要がある。現在タンパク質分子の結晶解析 においては、ほとんどの場合、振動写真法 (rotation method) が用いられる。つまり、結晶を 回転軸の周りに微小角で振動させながら、その回 折像を二次元検出器で連続的に収集する。回折能

⁺解説特集「光化学系の構造・モデル計算から見えてきた光合 成反応の妙」

*連絡先 E-mail: hirata@spring8.or.jp

の低いタンパク質結晶からの高精度回折強度測 定には放射光の高輝度X線利用が有効であるが、 一方で放射線による試料の損傷が深刻化した。こ のいわゆる放射線損傷を抑えるためにサンプル 結晶の冷却が有効であることが見出され、結晶中 の水にグリセロールやトレハロースなとの抗凍 結剤を加え、100K以下の低温で瞬間的に凍結さ せて、低温窒素ガス気流下での回折強度測定を行 うことが現在一般的な測定方法となった。ただし 冷却による放射線損法低減にも限界がある。

タンパク質 X 線結晶構造解析における放射線 損傷には大きく分けて二つあることが知られて いる。グローバルな損傷とローカルな損傷である。 X 線の照射によって結晶格子の長さが変化した り、結晶のモザイク度が変化したり、結果として 回折強度がデータ収集中に目に見えて弱くなる などのデータ劣化を総じてグローバルな放射線 損傷と呼ぶ。一方でグローバルな放射線損傷が無 いと考えられる場合にも電子密度上でタンパク 質分子の形が変化するなど、精密構造決定に障害 となる放射線損傷をローカルな放射線損傷と呼 び、グローバルな放射線損傷と分けて議論される 場合がある。当然ローカルな放射線損傷はグロー バルなものよりも X 線照射量が少ない実験条件 で起こる。ローカルな損傷はその空間の放射線損 傷 "感受性"によって起きやすさ(観測されやす さ)が異なり、それは電子密度の高低でほぼ規定 される。例えば金属原子など原子番号が多い原子 の周辺ほど観測されやすく、金属原子周辺に不可 解な電子密度が生じる、ジスルフィド結合の乖離、 アミノ酸側鎖の酸素原子の乖離など見え方も 種々報告されている。いずれにせよタンパク質結 晶の放射線損傷は結晶に X 線を照射した場合に 必ず起こる現象であり、それが問題になるかどう かは結晶構造解析の目的に応じて判断すべきで ある。特に原子番号の大きい金属イオンを含み、 それがタンパク質の機能に重要な役割を持つ場 合には注意深く解析を進めるべきであろう。

放射線損傷は吸収線量(結晶がX線照射によっ て単位重量あたりの吸収するエネルギー量 J/kg = Gy)によって定量化され、さらに凍結したタン パク質結晶試料の回折能は吸収線量 20 MGy で おおよそ半分になるということが広く知られて いる(Henderson limit)。回折強度の減衰(グロー バルな放射線損傷)に関するこの知見に基づき通 常は、結晶に含まれる分子などの情報から利用す るX線のエネルギーにおける吸収係数を概算し、 データ収集時の露光条件を決定するなど対策が 講じられてきた。一方のローカルな放射線損傷が 問題になる場合には結晶構造解析ではない方法

(分光学など)で吸収線量とタンパク質の状態変 化の関係を調査し損傷が重篤でないレベルの吸 収線量で結晶構造解析を行う、あるいは、系統的 に損傷量を変化させた構造決定を行って電子密 度変化から損傷の無い構造を予測するなどの方 法が用いられている。問題は損傷量をより低減す るためには分解能がトレードオフとなることで あり、これを解決することが従来のシンクロトロ ン放射光では困難であった。以下にシトクロム酸 化酵素(以下 CcO)の結晶構造解析を例にこれに ついて記述する。

2. 高分解能結晶構造解析と放射線損傷の問題

ミトコンドリア内膜に存在する CcO は分子状 酸素を水にまで還元する反応と共役して膜を介 したプロトン能動輸送を行う細胞呼吸末端酸化 酵素の一つである。CcO が形成する膜内外のプロ

図 1. シトクロム c 酸化酵素 (CcO) の酸素還 元中心の電子密度 Fe_aCu_Bの間に配位子が存在している。

トン濃度差は細胞のエネルギー源である ATP の 合成に利用されるため、この酵素は細胞のエネル ギー変換過程で最も重要な酵素の一つであると 言える。ウシ心筋由来酸化型休止型(以下単に酸 化型と呼ぶ)CcOの構造は 1995 年に決定され¹⁾、 その後、その分子機構のさらなる理解のため主に 高分解能 X 線結晶構造解析を継続して行ってい た^{2),3)}。特に酸化型の酸素還元中心の配位分子種 の特定は反応サイクル中の電子の授受とプロト ンポンプ機構のカップリングを理解する上で重 要な研究対象であった。CcOの酸素還元中心はへ ム鉄およびその近傍に存在する Cup で構成され ており、分子状酸素の還元反応が起こる。この活 性中心(図1)には配位子の電子密度が認められ ていた。この配位子同定のための高分解能酸化型 CcO 構造解析において放射線損傷の問題に直面 した。反応中間体結晶構造解析を行うために、 ビームラインに設置したオンライン結晶分光装 置により、図らずも結晶への X 線の照射が酸化 型結晶の吸収スペクトルに変化を与えることが 判明した。このことは、酸素還元中心の電子状態 が変化していることを示唆していたため⁴⁾、我々 は回折データ取得の際の X 線総露光量を系統的 に変化させた酸化型 CcO の高分解能構造決定を 行いそれらの比較を行った。その結果、露光量増 加に伴って酸素還元中心の配位子の結合長が伸 長することが明らかとなった。配位子の損傷に伴 う化学変化や、金属イオンの酸化状態の変化によ り配位構造が変化することも可能性として考え られた。

配位子の同定のためには高分解能構造が必要 である。そのため放射光施設の高強度 X 線照射 を行っていたが、それにより同定したい配位子の 形を歪めてしまうというジレンマであった。これ は先の述べたところのローカルな放射線損傷に 相当する。とりわけ金属で構成された酸素還元中 心は放射線損傷感受性が高く、そこに配位する分 子種の特定には深刻な問題であった。

この問題を解決するため、合計 400 個あまりの CcO 結晶の各結晶から1枚だけ(通常はフルデー タ 450 枚収集)回折像を取得し、それらをマージ して利用する手法を開発し酸化型 CcO の構造解 析を行った⁵⁾。このように収集したデータに基づ いて決定した構造中の配位子 O-O 結合長を1.7 Å と推定し、溶液状態の共鳴ラマン法の結果を合わ せて配位子を過酸化物イオンであると推定した [4]。しかしこの構造解析で得た O-O 結合長 1.7 Å も、共鳴ラマン分光法により決定されていた 1.5 Å よりも 0.2 Å 長いものであった。シンクロトロ ンでできうる最少の放射線損傷量の測定でも「あ るがままの」配位子の構造を取得することは実現 不可能であったといえる。

3. XFEL に期待されたタンパク質の高分解能無 損傷構造解析

タンパク質結晶の放射線損傷は結晶に入射した X 線により引き起こされる光電効果で生じた

図 2. SF-ROX (Serial Femtosecond Rotation Crystallography)^{8,9}におけるデータ収集の模式 図

凍結した数百μm 大の結晶を利用して XFEL を 照射して回折像を取得し、露光点と結晶方位を 変えて測定を繰り返し行う。50μm 間隔で XFEL 照射位置を変更する。 電子(光電子)が主な原因であるといわれている ⁶。結晶内で生じた光電子は結晶中に多く含まれ る水分子やタンパク質分子と相互作用を起こし 反応性の活性分子種を多く生成し、それらが結晶 内の分子と相互作用することによりあらゆる放 射線損傷に関する化学反応を引き起こす。結晶内 で起きるこの反応の時間スケールは速いもので おおよそピコ秒オーダーであるとされている。

大型放射光施設である SPring-8 に併設された X線自由電子レーザー(XFEL)施設 SACLA で 利用できるX線のパルス長はおおよそ10フェム ト秒である。このごく短い露光時間で利用可能な XFEL を利用すればタンパク質結晶の放射線損 傷の化学反応が引き起こされる「前」の結晶構造 を反映した回折像を取得することができ、無損傷 構造解析が実現できる (Diffraction before destruction)と考えられている⁷⁾。この場合、1パ ルスに含まれるX線光子数が増えれば増えるほ ど回折分解能が高くなり、無損傷高分解能構造解 析が実現可能となる。

そこで我々は XFEL を用いた CcO 無損傷高分 解能構造解析による配位子同定を計画した。凍結 CcO 結晶に対して XFEL を1パルス(含まれる光 子数 10¹⁰~10¹¹個) 照射し1枚の回折イメージを 取得し、それまで XFEL 照射で損傷を受けていな い結晶体積に次の XFEL を照射して回折イメー ジを1枚取得する。結晶は撮像の都度、微小量回 転させ、これを結晶の交換を含めて繰り返すこと でデータ収集を完成させる方法を考案した。

この方法を用いるために凍結 CcO 結晶に XFEL を1パルス照射した場合、結晶上どの程度 の距離まで放射線損傷が広がるかを明確に知る 必要があった。我々は解析の対象となる酸化型 CcO 結晶を用いて X 線照射による損傷の伝播距 離を実験的に決定した。回折強度の減衰を指標に した場合、XFEL の照射位置からおよそ 11 μ m 程 度の位置までが放射線損傷により影響を受けて いた。この結果にセーフティマージンを付加し、 各照射点間の距離を 50 μ m として実験を行った。 この方法は SFX (Serial Femto-second Crystallography) と区別化するために「Serial Femtosecond Rotation Crystallography (以下 SF-ROX)」と命名された(図2)⁸。SFX では大 量の微小結晶(数µm 程度)を用いたデータ収集 を行っていたが、SF-ROX では数百µm 大の結晶 を利用するという点が2つの手法の最大の違い である。通常、得られる回折強度は回折に寄与す る結晶格子の数に比例するため、高品質な大型結 晶を用いることで微小結晶よりも構造解析の分 解能を高めることができると考えてこの手法を 開発した。50µm という照射点距離については (後述する光化学系II 複合体の解析を含め)種々 の SF-ROX 構造解析の結果から一般的に適用が

可能であると考えている(光子密度が 10¹⁰~10¹¹ 光子/µm²の 50~100 倍になったときには挙動が変 わる可能性は否定しない)。

4. 実験結果

実際に行った測定の手順を簡単に記述する。凍結 CcO 結晶をゴニオメータ(結晶を並進・回転可能にする装置)にマウントし、露光点間の距離50 µm、静止写真のステップ角度 0.1°で測定を行った。CcO 結晶は平均的な結晶サイズは500×500×100~200 µm 程度であったため、多いものだと1結晶から100 枚程度(約10°分)の角度が連続する回折イメージが取得可能であった。最終的に76 個の凍結結晶を用いて構造解析に必要な構造因子を分解能1.9 Å で得ることに成功した。

これにより得られたデータを用いて CcO の構 造解析を行った。目的であった配位子の構造につ いてはまず酸素還元中心の電子密度図を 2F_o-F_c マップにより確認した。配位子はこれまでの CcO 酸化型構造と同様、Fe_{a3}-Cu_Bの間に存在しており 特に大きな構造変化は認められなかった。定量的 に配位子の結合長を検討するために我々はここ に酸素原子が2個存在することを前提とし、その 結合長に通常精密化時に利用する束縛条件を適 用しないで (un-restrained) 原子座標の精密化を 行った(注:通常タンパク質の構造解析では観測 される構造因子の数が、決定するべき全ての原子 位置や熱的ゆらぎパラメータの数よりも少ない ため、電子密度図を解釈する際にアミノ酸や化合 物ごとに既知の結合長や結合角などの構造情報 ライブラリを利用している。ライブラリ中の理想

的な結合長や結合角度が乱されないように束縛 条件をかけながら観測データとモデルを最小二 乗法で合致させる。ここでいう un-restrained 精密 化は酸素原子間距離にこのような前提を与えず に原子位置を決定したという意味)。un-restrained 精密化後の酸素原子間距離は1.7 Åとなった。過 去に行っていた 400 個以上の結晶を用いた放射 光施設における最少損傷量であるデータにも同 様の精密化を適用すると1.9Åであり⁴⁾、その数 値よりも0.2 Å 短いものとなった。さらに電子密 度図に基づき酸素化合物の結合距離を決定する ために、今度は配位子の酸素間の結合距離に 0.1 Å ずつ 1.2 Å (分子状酸素)~1.8 Å という束縛条 件を与えて構造精密化を行い、得られた構造因子 を用いて F_o-F_oマップ(注:観測データとモデル の構造因子の差の電子密度図)を比較した。この 結果、酸素結合距離が 1.5 Åと 1.6 Åの結合長の 時に電子密度の残差が最も小さいことが分かっ たため、酸化型 CcO 中の配位子結合距離が 1.55 Å であるとして精密化を行い最終構造とし、配位子 の化学種が過酸化物イオンであるという過去の 推定が正しいと結論づけた。配位子以外の部分で も SF-ROX で得られた CcO 構造が無損傷である 確証を得ることが出来た %。

5. SF-ROX の応用展開:光化学系 II 複合体

CcO で確立した SF-ROX を光化学系 II 複合体 の無損傷高分解能構造解析にも適用した。光化学 系 Ⅱ 複合体は光エネルギーを利用して水分子か ら酸素分子を発生させることのできる唯一の天 然触媒である。光化学系 Ⅱ 複合体の結晶構造は 過去にはシンクロトロン放射光を利用して解析 されていたが、反応を触媒する部分(マンガンク ラスタ)が放射線損傷の影響(ローカルな損傷) で天然状態と異なった構造になっていることが 示唆されていた。そこで岡山大学の沈先生・菅先 生らと協力して SF-ROX により光化学系 II 複合 体の構造を 1.95 Å 分解能で決定した。得られた 酸素発生中心の構造は X 線吸収微細構造の測定 および理論計算により提唱されていた Mn-Mnの 距離とその長さが一致し、放射線による損傷の まったくない構造であることが示唆された。水分

解反応の開始状態 (S₁状態) では酸素発生中心を 構成する Mn の価数は Mn1D が+3、Mn2C が+4、 Mn3B が+4、Mn4A が+3 であること、水分解反応 における基質分子 O5 の化学種は OH⁻であること、 および、その反応機構が菅先生らによって提唱さ れた¹⁰⁾。これ以降の議論については、本解説特集 の斎藤 圭亮氏の記事を参照いただきたい。

6. おわりに

新しい光源 XFEL を用いて、従来のタンパク質 の X 線結晶構造解析における大きなジレンマを 解決することができた。分子量 40 万超のタンパ ク質複合体であるシトクロム酸化酵素・光化学系 II 複合体の高分解能かつ無損傷構造を決定した ことで、機能を理解するために重要な構造情報を 得ることができた。XFEL の利用はタンパク質の 結晶構造解析に新たな可能性を与え、我々はその 特徴の一つを活用し構造生物学の大きな一歩を 踏み出した。

謝辞

本構造解析は JST/X 線自由電子レーザー施設 重点戦略課題推進事業「無損傷・動的結晶構造解 析による生体エネルギー変換過程の可視化」およ び JST/CREST「ミトコンドリア呼吸鎖の構造生 命科学ー構造がもたらす正確さ」の支援を受け実 施しました。本研究をともに行った理研・放射光 科学総合研究センターの同僚および兵庫県立大 の諸先生方・学生の皆様、また技術支援を頂いた JASRI、RSC エンジニアリングチームの皆様を始 めとする関係各位に深く感謝申し上げます。また 本稿に関する実験は SACLA 利用実験課題(課題 番号:2012A8011、2012B8040、2013A8047 and 2013B8052)でデータ収集を行った成果です。

また今回、光合成学会に招待してくださった オーガナイザーの先生方に深く感謝いたします。 光合成学会誌ということで PSII に関する原稿を 準備するべきかとも思ったのですが、私自身は X 線結晶構造解析の手法開発を担当しましたので、 XFEL という新光源をどう考えてどう利用した かに焦点を当てて原稿を書かせて頂きました。今 回の発表に関連するアイディアやご意見などご 連絡頂けましたら大変嬉しいです。

Received March 27, 2017; Accepted April 5, 2017; Published April 30, 2017

参考文献

- Tukihara, T., Aoyama, H., Yamashita, E., Tomizuka, T., Yamaguchi, H., Itoh, K., Nakashima, R., Yaono, R. and Yoshikawa, S. (1995) Structures of metal sites of oxidized bovine heart cytochrome *c* oxidase at 2.8 Å. *Science* 269, 1069–1074.
- Muramoto. K., Hirata, K., Shinzawa-Itoh, K., Yoko-o, S., Yamashita, E., Aoyama, H., Tsukihara, T. and Yoshikawa S. (2007) A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome *c* oxidase. *Proc. Natl. Acad. Sci. U.S.A.* 104, 7881–7886.
- Muramoto, K., Ohta, K., Shinzawa-Itoh, K., Kanda, K., Taniguchi, M., Nabekura H, Yamashita, E., Tsukihara, T. and Yoshikawa, S. (2010) Bovine cytochrome *c* oxidase structures enable O₂ reduction with minimization of reactive oxygens and provide a proton-pumping gate. *Proc. Natl. Acad. Sci. U.S.A.* 107, 7740–7745.
- Aoyama, H., Muramoto, K., Shinzawa-Itoh, K., Hirata, K., Yamashita, E., Tsukihara, T., Ogura, T. and Yoshikawa, S. (2009) A peroxide bridge between Fe and Cu ions in the O₂ reduction site of fully oxidized cytochrome *c* oxidase could suppress the proton pump. *Proc. Natl. Acad. Sci. U.S.A.* 106, 2165–2169.
- Hirata, K., Yamashita, E., Aoyama, H., Muramoto, K., Yoshikawa, S. and Tsukihara, T. (2004) Scaling of one-shot oscillation images with a reference data set.," *J. Synchrotron Rad.* 11, 60–63.
- O'Neill, P., Stevens, D.L. and Garman, E.F. (2002) Physical and chemical considerations of damage induced in protein crystals by synchrotron radiation: a radiation chemical perspective. *J. Synchrotron Rad.* 9, 329–332.
- Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. and Hajdu, J. (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. *Nature* 406, 752–757.
- Schlichting, I. (2015) Structural biology: Photosynthetic complex in close-up. *Nature* 517, 26– 27.
- 9. Hirata, K., Shinzawa-Itoh, K., Yano, N., Takemura,

光合成研究 27 (1) 2017

S., Kato, K., Hatanaka, M., Muramoto, K., Kawahara, T., Tsukihara, T., Yamashita, E., Tono, K., Ueno, G., Hikima, T., Murakami, H., Inubushi, Y., Yabashi, M., Ishikawa, T., Yamamoto, M., Ogura, T., Sugimoto, H., Shen, J.R., Yoshikawa, S. and Ago, H. (2014) Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. *Nat. Meth.* 11, 734–736. Suga, M., Akita, F., Hirata, K., Ueno, G., Murakami, H., Nakajima, Y., Shimizu, T., Yamashita, K., Yamamoto, M., Ago, H. and Shen, J.R. (2015) Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. *Nature* 517, 99–103.

High resolution damage-free structure analyses of supra-molecular complexes with SF-ROX

Kunio Hirata*

RIKEN SPring-8 Center, JST/CREST

解説

Photosystem II における水素結合ネットワークを介したプロトン移動[‡]

東京大学 先端科学技術研究センター

斉藤 圭亮*

蛋白質中のプロトン移動は水分子が作る水素結合ネットワーク上で起こる。Photosystem II (PSII)の結晶構造では、蛋白質中の水分子が見えているので、その構造情報を利用することで、PSII内で起こるプロトン移動のしくみを理論的に調べることができる。本稿では、蛋白質がいかに水素結合ネットワークをうまく利用してプロトン移動を行っているのかを、(1) PSIIの水分解における第一段階のプロトン排出と、(2)水分解反応に直接関わらないが酸化還元活性をもつ TyrD からのプロトン排出という2つの具体例を通じて紹介する。

1. はじめに:プロトン移動と水素結合

プロトン (H⁺) 移動現象は生物におけるエネ ルギー代謝において非常に重要な役割を果たし ており、光合成においてもいたる所で利用されて いる。プロトン移動の特徴として、溶液中におい てその移動度が他のイオンの移動に比べて一桁 大きいことが挙げられる¹⁾。この理由はプロトン 移動の機構にある。溶液中では通常、プロトンは ヒドロニウムイオン (H₃O⁺) の形で存在し、周囲 の水分子と水素結合を形成している。H₃O⁺が移動 する場合、その H₃O⁺そのものが実際に移動する 必要はない。水分子間の水素結合内のプロトンを 玉突きのようにほんの少しずつ動かすだけで、見 かけ上 H₃O⁺を遠くに移動させることができる

(図 1)。このようなリレー式プロトン移動の機 構は Grotthuss 機構と呼ばれている²⁾。これに対 し他のイオンではそれ自身が実際に動く必要が ある。この違いがプロトンだけが特異的に大きな 移動度をもつ原因であると考えられている¹⁾。

蛋白質の中でも、溶液中と同様に、プロトン移 動は水分子が作る水素結合の上で起こる³⁾。した がって、蛋白質中のプロトン移動を調べるための 第一歩は、その蛋白質の中で、水分子とその周り

*解説特集「光化学系の構造・モデル計算から見えてきた光合 成反応の妙」

*連絡先 E-mail: ksaito@appchem.t.u-tokyo.ac.jp

図 1. Grotthuss のプロトン移動機構

水素結合の向きだけを入れ替えることで、見かけ上、遠くへH₃O⁺を移動させることができる。

のアミノ酸残基がどのように配置され、どのよう に水素結合ネットワークを形成しているかを知 ることである。近年、X線による結晶構造解析の 研究が進み、光合成蛋白質のような大きくて複雑 な蛋白質でも、その中の水分子がはっきり見える くらいに高解像度の構造が数多く解かれている ^{4).5)}。それらの構造を利用することで、実際に実 験することなしに、理論的にプロトン移動を調べ ることが可能である。本稿では photosystem II (PSII) に関して筆者らが行ったそのような試み を紹介したい。

2. 蛋白質構造に基づいたプロトン移動の理論解 析: QM/MM 法

Grotthuss のプロトン移動機構では、 H_3O^+ の酸 素原子と水素原子との間の共有結合を切って、代 わりに隣の水分子の酸素原子へと結合を作り直 す、という過程が繰り返されてプロトンを輸送し ていく(図 1)²⁾。一般に、化学結合の切断・生 成には分子内の電子の動きが関わっている。その ためプロトン移動を理論計算で調べるためには、 量子化学的手法(電子の運動を記述する基礎方程 式であるシュレーディンガー方程式に立脚して いる)を用いる必要がある。

ところが量子化学計算には、あまり大きな分子 を扱えないという欠点がある。通常、扱う分子の 大きさNが大きくなればなるほど、 N^3 に比例し て計算時間がかかるからである。例えば、Nを原 子数と見なすと、水分子1個 (N=3) の計算が1 秒で終わるとき、PSII (N = ~90000) では (90000 / 3)³ 秒 =~85 万年(!) かかる計算になり、そのま までは到底不可能である。これを可能にするため に工夫を施したのが、2013年のノーベル化学賞 の対象となった quantum mechanics/molecular mechanics (OM/MM) 法という手法である^{6,7)}。大 きな蛋白質でも、反応に重要な活性部位 (今回の 例ではプロトン移動が起こる部位) はその中の ごく一部だけである。OM/MM 法ではその活性部 位だけを量子化学 (QM) 的に扱い、残りの大部 分は古典力学に基づいた分子力学 (MM) で取り

図 2. QM/MM 法の概念図

計算に時間がかかる QM 計算を適用する領域を 活性部位に限ることで、計算を速く行う工夫を している。 扱う(図2)。MM 計算はQM 計算にくらべて非 常に速く、蛋白質全原子を対象にしても瞬時に計 算が終わる。MM 計算では電子の運動を記述する ことができないが、反応に関係する電子はQM で 取り扱う活性部位だけに局在しているので、問題 は無い。このようなわけで、QM/MM 法を利用 することによって、蛋白質全体を十分に実用的な 時間で十分に正確に計算できる。

3. 水分解反応に伴うプロトン移動

PSII 蛋白質複合体は太陽光エネルギーを駆動 力として、水分子から電子を引き抜き、酸素とプ ロトン(H⁺) に分解している⁸⁾:

 $2H_2O \rightarrow 4e^- + 4H^+ + O_2$

この反応は4段階の光酸化過程からなる(図3) ³⁾。1段階ごとに触媒部位MnCa 錯体から電子が 1つずつ引き抜かれ、 S_0 だった錯体の電子状態が $S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4$ と変化する(Mnの価数または錯体 の持つ電荷が次々に上がる)。そして、 S_4 状態が 作られた後、はじめて酸素1分子が発生する。こ のときプロトンの放出機会は一定ではなく、1~4 回目の反応段階でそれぞれ1,0,1,2個のプロト

図3.PSIIの水分解反応の触媒部位MnCa 錯体の 構造⁴(上)と4段階からなる反応スキーム(下)

図4. MnCa 錯体の周りの水素結合ネットワーク⁴。 赤玉は水分子の酸素原子を表す。

ンが蛋白質外へと放出される(図 1)^{9,10)}。私たちはまず、反応の第一段階 (S₀→S₁)で起こるプロトン放出に着目した。

3.1. 水分解第一段階におけるプロトン放出サイトの候補: 04 と 05

この過程において、プロトンは MnCa 錯体のど こから放出されるのだろうか。結晶構造 ⁴⁾では、 錯体を構成する酸素原子の中でもとりわけ"O5" は Mn や Ca との結合距離が長く(図 3)、プロ トン化されて OH⁻となっている可能性がある。そ のため当初はO5 がプロトン放出サイトの有力候 補だと考えられた¹¹⁻¹³⁾。しかし、ENDOR-EPR 実 験によるとOH⁻となる酸素原子はMn3 とMn4 の 間にあることが示されており^{14,15)}、実はO5 だけ でなく、"O4"(図3)もそれに該当する。以上の ことからO4 とO5 をプロトン放出サイトの候補 と考えた。

錯体周辺の構造⁴⁾を見てみると、O4 や O5 の周 りには多数の水分子が存在し、水素結合ネット ワークを形成している(図 4)。先に述べたよう に、プロトンは水素結合ネットワークを介して移 動するので、もし O4 や O5 からプロトンが放出 されるのなら、蛋白質外へのプロトン排出にこの ネットワークが利用されるに違いない。

梅名らによる PSII 結晶構造 ⁴に QM/MM 法を 適用し、O4 と O5 それぞれについて、周囲の水 素結合ネットワークを通じたプロトン排出の起 こりやすさを調べた¹⁶。計算では MnCa 錯体を含 む一連の水素結合ネットワークを QM 領域とし た。なお、梅名らの構造⁴では 25%の Mn が二価 に還元されていると指摘されているが⁵、本研究 では、それぞれの S 状態に対して正しい価数を仮 定した量子化学計算によって最適化された構造 を利用しているため、その影響は排除されている と考えている。

図 5. (a) $S_0 \rightarrow S_1$ 遷移における Mn 原子の 価数変化 (b) O4 経路と (c) O5 経路の $S_0 \ge S_1 状態におけるプロトン移動ポテ$ ンシャル¹⁶

数字は結晶構造の水番号を表し、1つ のカーブが2水分子間の水素結合内プ ロトン移動に対応する。プロトン放出 後をエネルギーの基準にとった。

3.2 プロトン移動が起こるのは 04 から

まず、1 つ目の候補 O4 についての結果¹⁶を示 す。光を受ける前の S₀状態では、O4 のプロトン は飛び出すことができない(図 5b 左)。ところ が、第一の光酸化によって MnCa 錯体が S₁状態 に移ると、状況は一変する。S₀状態では III 価だっ た"Mn3"が IV 価に上がったことで(図 5a)、そ の隣の O4 のプロトンのエネルギーが高くなり、 プロトンはポテンシャルの坂を転がるようにし て、蛋白質外部の方向へと移動することが分かっ た(図 5b 右)¹⁶。

一方、2つ目の候補 O5 では、たとえ S₁状態に なったとしてもポテンシャルは上り坂のままで あり、プロトンは移動し得ない(図 5c)。以上 の結果から、水分解の第一段階 $(S_0 \rightarrow S_1)$ で起こ るプロトン放出は O5 ではなく O4 から起こるこ とが結論づけられた¹⁶。

3.3 プロトン移動経路の水素結合ネットワーク は理想的なかたちをしている

なぜ O5 経路ではなく O4 経路でプロトン移動 が起こるのだろうか。図 6a は計算で得られたプ ロトン移動前の水分子の構造を示している(プロ トンは O4 上に存在している)。これがプロトン 移動後には図 6b に変化する(プロトンは MnCa 錯体から離れた所にある水分子上に存在してい る)。この2つの構造を見比べると、プロトン移 動前後で水分子の位置は変化せずに水素結合の 向きだけが入れ替わっているだけである。まさに、 Grotthuss 機構(図1)によってプロトン移動が起 こることを示している¹⁶。

図 6c は a と b を重ね合わせた図である。面白 いことに、水分子が三つ叉状の構造に見える。こ のことはプロトン移動前後で水分子の O 原子の 位置と水素結合の角度が変化しないことを反映 している。一方、プロトン移動が起こらない O5 経路ではどうだろうか。計算で作ったプロトン移 動前後の構造を重ね合わせてみたところ、O4 と は異なり、三つ叉状の構造に見えない(図 6e-g)。 O5 の経路ではプロトン移動前後で水分子が動い てしまうことを反映している。水分子が動いてし まうと、Grotthuss 機構による効率的なプロトン 輸送は実現し得ないのである。

このことから、プロトン移動経路となるかどう

図 6.04 経路における (a) プロトン移動前と (b) 後の構造 (c) その重ね合わせ¹⁶ (d) 理想的なプロトン 移動経路. 05 経路における (e) プロトン移動前と (f) 後の構造と (g) その重ね合わせ¹⁶ かの鍵は、蛋白質中において水分子が形成する水 素結合ネットワークにあることが明らかになっ た。プロトン移動経路となる水素結合ネットワー クは、プロトン移動するのに理想的な形をしてお り、かつ水分子が周囲の蛋白質と強固に結びつき、 その形を崩さないようにできている必要がある (図 6d)。このような理想的なプロトン経路の 存在下で、光酸化によって MnCa 錯体の酸化状態 が S₀から S₁になれば、そのエネルギーを受けた プロトンは必然的に効率よく排出される。

3.4. さらにその先のプロトン排出

O4 から放出されたプロトンは MnCa 錯体から 10 Å 程度離れた水分子 (1047)の位置(図 6a)ま では速やかに移動する。しかし、この水分子は、 まだ PSII 蛋白質複合体の内部であり(図 7a)、 その後さらにプロトンは蛋白質表面へと移動し なければならない。そのような経路は存在するだ ろうか。

私たちは、蛋白質構造に基づく空洞探索プログ

ラム¹⁷⁾を用いて、その先の経路の有無を解析した¹⁸⁾。その結果、1047 水分子の先の PsbU サブユニット(シアノバクテリア固有の表在性蛋白質)に、 外へと続く空洞が存在し、そこは多数の水分子によって満たされていることがわかった(図 7b)¹⁸⁾。 したがって、O4 から放出されたプロトンは最終 的にはこれらの水分子が作る水素結合ネット ワークを経由して、蛋白質外部へと放出されると 考えられる。なお、植物の場合には、PsbU の代 わりに別の表在性蛋白質 PsbP が存在しているが ^{19,20)}、そこでも、シアノバクテリアと同様に空洞 があり、その中は複数の水分子で満たされている 可能性が高いことが、電子顕微鏡による構造²¹⁾ に基づく私たちの理論解析によって示されてい る²²⁾。

4. Photosystem II の TyrD からのプロトン移動

私たちは、PSII 蛋白質複合体に含む別のプロトン移動経路として、TyrD からのプロトン排出経路も突き止めている。次にその研究を紹介する。

図 7. (a) PSII 蛋白質複合体全体における O4 経路の位置 (b) O4 経路とそれに続く PsbU サブユニットの空洞 (青色) とその 中の水分子 (赤玉) の水素結合ネット ワーク¹⁸⁾

図 8. (a) PSII の反応中心を構成する D1/D2 サブユ ニットとその中の補因子. 赤矢印は電子移動経路 を表す (b) TyrZ の電子の授受に伴う proton rocking機構 (c) TyrDの酸化に伴うプロトン放出

4.1. TyrZ と TyrD におけるプロトン共役電子移 動の違い

PSIIの反応中心は D1 と D2 のサブユニットか ら成るヘテロダイマーである(図 8a)。D1 と D2 サブユニットは相同性が高く、立体構造は互 いによく似ている。しかし、D1 は MnCa 錯体を 持ち電子移動活性があるが、D2 は MnCa 錯体を 持たないため電子移動活性がないという大きな 違いがある(図 8a)⁸。

D1 において、MnCa 錯体からクロロフィル二 量体 P680 (初期電荷分離反応によりここに正電 荷が生じる)への電子移動の仲介を行っているの がアミノ酸残基 D1-Tyr161 (通称 TyrZ) である (図 8a)。TyrZのOH基はすぐ隣にあるD1-His190 と水素結合をしており、TyrZ が P680+によって酸 化されると、OH 基のプロトンは His190 に移動し、 ラジカル状態 (TyrZ-O') が作られる (図 8b)²³。 その後すぐに TyrZ-O'は MnCa 錯体から電子を奪 うと同時に His190 に移しておいたプロトンを戻 し、もとの TyrZ-OH に戻る(図 8b)。酸化還元 に応じて TyrZ のプロトンが行ったり来たりする この機構は proton rocking 機構と呼ばれている ²³⁻²⁵⁾。

D2 側においても、TyrZ に対応する位置に D2-Tyr160 (通称 TyrD) が存在している (図 8a)。 TyrD は電子移動の起こらない D2 側に存在して いるにも拘わらず、酸化還元活性を持ち、電子の 授受を行っている。特筆すべき特徴として、一度 TyrD が酸化されてラジカル状態 (TyrD-O') が作 られると、数時間にも及ぶ長い間、その状態を維 持することが観測されている²⁶⁻²⁸⁾。TyrD が酸化 されるとき、TyrZ と同様に、OH 基のプロトンは どこかに移動するはずである。TyrD の隣にも、 D2-His189 が存在し、水素結合を形成しているの で(図 8c)、ここでも proton rocking 機構が実現 していると思われるかもしれないが、実はそうで はない: TyrZ においては D1-His190 の N8の隣に は D1-Asn298 の酸素原子があり、Nδから水素結 合を受ける入れる形になっている(図 8b)。こ のため、His190のNδには常にプロトンが存在し なければならない。N&のプロトンの存在のため、 TyrZ 側にあるもうひとつの NEにはプロトンがつ いていてもいいし、無くてもかまわない。この事 実が TyrZ の proton rocking 機構の前提になる。一 方、TyrDではD2-His189のNδの隣にはD1-Arg294 のNH基が存在しており、His189へ水素結合を与 えている(図 8c)。このため、D2-His189のN8 にはプロトンは存在し得えない。この結果、TyrD 側にあるもうひとつの Nεには必ずプロトンがつ いていなければならず、とれてはならない。言い 換えると、TyrD と D2-His189 との間では proton rocking 機構は実現し得ないのである²⁹⁾。

4.2. TyrD から放出されるプロトンの移動経路

では、TyrD が酸化されるとき、放出されたプロトンはどこへ行くのだろうか。上に述べた理由により TyrD の OH 基は D2-His189 とはの方向に水素原子を向けていると考えられる。構造を見てみると、その方向には複数の水分子が存在し、水

図 9. (a) TyrD からのプロトン移動経路と(b)その経 路において TyrD 近傍の水分子から D2-His61 へ至 るプロトン移動ポテンシャル²⁹⁾

素結合ネットワークを形成している。空洞探索プ ログラム¹⁷⁾による解析の結果、これらの水分子が 存在している空洞は蛋白質外部へとつながって いることが分かった(図 9a)²⁹⁾。そこで、この水 素結合ネットワークを通じたプロトン移動のポ テンシャルを計算したところ、プロトンが TyrD 付近の水分子から D2-His61 へ至るにつれ、ポテ ンシャルは下り坂になることが示された (図 9b) ^{29,30)}。このことから私たちは、TyrD から放出さ れたプロトンはこの経路を通って排出されると 結論づけた^{29,30)}。その後、このことは FTIR の実 験で実証された²⁵⁾。さらに、計算で得られた下り 坂のポテンシャルが示すことは、「TyrD-OH か ら TyrD-O'が作られるときに放出されたプロト ンが速やかに蛋白質外部へと移動する|ことだけ でなく、「一度外部へと放出してしまったプロト ンが再び元に戻って TyrD-OH を形成することは 非常に起こりにくい」ことも意味する30。この点 においても、TyrD-O'が長時間維持する観測事実 をよく説明する。

このプロトン移動経路は、水分子だけでなく、 途中に D2-Arg180 の側鎖を経由する点が興味深 い。また、経路となる水分子周囲の蛋白質環境の 特徴を調べてみたところ、TyrD 付近では疎水的 環境であるが、蛋白質外部へ進むにつれ親水的環 境へと変化することが分かった²⁹⁾。この環境の差 がプロトン放出の駆動力になっていると考えら れる。

図 10. D2 側の TyrD からのプロトン移動経路 (右) に対応して、D1 側にも似たような水素結合ネット ワークが存在する(左)³⁰

5. おわりに: PSII の他のプロトン移動経路

蛋白質においてプロトンは水分子の作る水素 結合ネットワークを通じて移動する。したがって、 高解像度の結晶構造があれば、QM/MM 手法によ りプロトン移動経路を特定できる。このことを、 PSII における2つの具体例を通じて紹介した。水 分解反応におけるS₀→S₁遷移では、プロトンは理 想的なかたちで水素結合した水分子の鎖を通っ て排出される。一方で、TyrD からのプロトン放 出経路は、水分子だけでなく Arg 残基からも成っ ているので、理想的な水素結合のかたちからはや や崩れているように見える。いずれにしても、蛋 白質はそこに置かれた水素結合ネットワークの 状況をうまく利用して、プロトン移動経路を構築 していることが見てとれる。

PSII の水分解反応では S₃への遷移以降の段階 で残り 3 つのプロトンが放出される。その時に使 われるプロトン排出経路は今回紹介した O4 経路 と同じであるとは限らない。今後、その経路がど れなのかを調べていきたい。そのヒントとなり得 る興味深い事実を最後に紹介したい:先に述べた TyrD のプロトン移動経路は電子移動の起こらな い D2 側に位置しているが、D1 側の対応する場 所はどうなっているだろうか。調べてみると、面 白いことに、その位置には TyrZ だけでなく、水 分子が作る水素結合ネットワークも存在してい る (図 10)³⁰⁾。もしかしたら、水分解で放出され る残りのプロトンのうちいくつかは、この水素結 合ネットワークを通って排出されるかもしれない。

謝辞

本研究は東京大学・石北央教授のもと、同研究 室の修士課程の坂下尚紀氏とともに行った研究 である。ここに謝意を表します。また、適切なご 指摘を迅速にくださった査読者の方にも感謝申 し上げます。

Received March 28, 2017; Accepted March 31, 2017; Published April 30, 2017

参考文献

- Voet, D. and Voet, J.G. (2011) Biochemistry, 4th Edition. John Wiley & Sons Inc, Hoboken, NJ.
- Agmon, N. (1995) The Grotthuss mechanism. *Chem. Phys. Lett.* 244, 456–462.
- Pomes, R. and Roux, B. (1996) Structure and dynamics of a proton wire: A theoretical study of H⁺ translocation along the single-file water chain in the gramicidin a channel. *Biophys. J.* 71, 19–39.
- Umena, Y., Kawakami, K., Shen, J.R. and Kamiya, N. (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. *Nature* 473, 55–60.
- Suga, M., Akita, F., Hirata, K., Ueno, G., Murakami, H., Nakajima, Y., Shimizu, T., Yamashita, K., Yamamoto, M., Ago, H. and Shen, J.R. (2015) Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. *Nature* 517, 99–103.
- Warshel, A. and Karplus, M. (1972) Calculation of ground and excited-state potential surfaces of conjugated molecules. 1. Formulation and parametrization. J. Am. Chem. Soc. 94, 5612–5625.
- Warshel, A. and Levitt, M. (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103, 227–249.
- Renger, G. (2001) Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism. *Biochim. Biophys. Acta* 1503, 210–228.
- Suzuki, H., Sugiura, M. and Noguchi, T. (2005) pH dependence of the flash-induced S-state transitions in the oxygen-evolving center of photosystem II from *Thermosynechoccocus elongatus* as revealed by

Fourier transform infrared spectroscopy. *Biochemistry* 44, 1708–1718.

- Haumann, M. and Junge, W. (1999) Photosynthetic water oxidation: a simplex-scheme of its partial reactions. *Biochim. Biophys. Acta* 1411, 86–91.
- McConnell, I.L., Grigoryants, V M., Scholes, C.P., Myers, W. K., Chen, P. Y., Whittaker, J. W. and Brudvig, G.W. (2012) EPR-ENDOR characterization of (¹⁷O, ¹H, ²H) water in manganese catalase and its relevance to the oxygen-evolving complex of photosystem II. J. Am. Chem. Soc. 134, 1504–1512.
- Pal, R., Negre, C.F., Vogt, L., Pokhrel, R., Ertem, M. Z., Brudvig, G.W. and Batista, V.S. (2013) S-state model of the oxygen-evolving complex of photosystem II. *Biochemistry* 52, 7703–7706.
- Siegbahn, P. E. (2013) Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O-O bond formation and O2 release. *Biochim. Biophys. Acta* 1827, 1003–1019.
- 14. Kulik, L. V., Epel, B., Lubitz, W. and Messinger, J. (2007) Electronic structure of the Mn_4O_xCa cluster in the S_0 and S_2 states of the oxygen-evolving complex of photosystem II based on pulse ⁵⁵Mn-ENDOR and EPR spectroscopy. *J. Am. Chem. Soc.* 129, 13421–13435.
- Cox, N., Pantazis, D.A., Neese, F. and Lubitz, W. (2013) Biological water oxidation. Acc. Chem. Res. 46, 1588–1596.
- Saito, K., Rutherford, A. W. and Ishikita, H. (2015) Energetics of proton release on the first oxidation step in the water-oxidizing enzyme. *Nat. Commun.* 6, 8488.
- Petrek, M., Otyepka, M., Banas, P., Kosinova, P., Koca, J. and Damborsky, J. (2006) CAVER: a new tool to explore routes from protein clefts, pockets and cavities. *BMC Bioinformatics* 7, 316.
- Takaoka, T., Sakashita, N., Saito, K. and Ishikita, H. (2016) pKa of a proton-conducting water chain in photosystem II. J. Phys. Chem. Lett. 7, 1925–1932.
- Bricker, T. M., Roose, J. L., Fagerlund, R. D., Frankel, L. K., and Eaton-Rye, J. J. (2012) The extrinsic proteins of Photosystem II. *Biochim. Biophys. Acta* 1817, 121–142.
- 20. Ifuku, K. and Noguchi, T. (2016) Structural coupling of extrinsic proteins with the oxygen-evolving center in photosystem II. *Front. Plant. Sci.* 7, 84.
- Wei, X. P., Su, X. D., Cao, P., Liu, X. Y., Chang, W. R., Li, M., Zhang, X.Z. and Liu, Z.F. (2016) Structure of spinach photosystem II-LHCII supercomplex at

3.2 Å resolution. Nature 534, 69-74.

- Sakashita, N., Watanabe, H.C., Ikeda, T. and Ishikita, H. (2017) Structurally conserved channels in cyanobacterial and plant photosystem II. *Photosynth. Res.*, 1–11.
- Saito, K., Shen, J.R., Ishida, T. and Ishikita, H. (2011) Short hydrogen-bond between redox-active tyrosine Y_Z and D1-His190 in the photosystem II crystal structure. *Biochemistry* 50, 9836–9844.
- Ahlbrink, R., Haumann, M., Cherepanov, D., Bogershausen, O., Mulkidjanian, A. and Junge, W. (1998) Function of tyrosine Z in water oxidation by photosystem II: electrostatical promotor instead of hydrogen abstractor. *Biochemistry* 37, 1131–1142.
- 25. Nakamura, S. and Noguchi, T. (2015) Infrared detection of a proton released from tyrosine Y_D to the bulk upon its photo-oxidation in photosystem II. *Biochemistry* 54, 5045–5053.

- 26. Rutherford, A.W., Boussac, A. and Faller, P. (2004) The stable tyrosyl radical in photosystem II: why D? *Biochim. Biophys. Acta* 1655, 222–230.
- Babcock, G.T., Barry, B.A., Debus, R.J., Hoganson, C. W., Atamian, M., McIntosh, L., Sithole, I. and Yocum, C. F. (1989) Water oxidation in photosystem II: from radical chemistry to multielectron chemistry. *Biochemistry* 28, 9557–9565.
- Diner, B.A. and Babcock, G.T. (1996). in Oxygenic Photosynthesis: The Light Reactions (Ort, D. R., and Yocum, C. F., Eds.), pp 213–247, Kluwer Academic Publishers, Dordrecht, Netherlands.
- Saito, K., Sakashita, N. and Ishikita, H. (2016) Energetics of the proton transfer pathway for tyrosine D in photosystem II. *Aust. J. Chem.* 69, 991–998.
- Saito, K., Rutherford, A.W. and Ishikita, H. (2013) Mechanism of tyrosine D oxidation in Photosystem II. *Proc. Natl. Acad. Sci. U.S.A.* 110, 7690–7695.

Proton Transfer via Hydrogen Bond Networks in Photosystem II

Keisuke Saito *

Research Center for Advanced Science and Technology, The University of Tokyo

解説

植物の光化学系 I-集光性アンテナ複合体 I 超複合体の結晶構造と エネルギー伝達の構造基盤[‡]

岡山大学異分野基礎科学研究所 菅 倫寬*

光化学系 | 複合体は光駆動による電子移動と酸化還元反応を行い、糖の合成に必要な還元力を供給して いる。植物の光化学系 | 複合体は反応中心コアと光捕集アンテナ | 複合体が光化学系 | 光捕集アンテナ | 超複合体を形成し、光エネルギーをほぼ 100%の効率で伝達および変換している。光合成における高 い効率での光エネルギー利用の基本原理を理解することを目的とし、筆者らは高等植物マメ由来の光 化学系 |-光捕集アンテナ | 超複合体の結晶構造を分解能 2.8 Å で決定した。これにより、分子量が 60 万に及ぶ超複合体の詳細な構造、とりわけ、光捕集アンテナ | を構成する 4 つの Lhca サブユニットに おいて秩序正しく配置されたクロロフィル、カロテノイド、脂質分子、水分子などによる構造基盤を 明らかにし、光エネルギーの捕集と伝達の経路、および、光阻害に対する防御機構を提唱した。

1. はじめに

植物や各種の藻類が行う酸素発生型光合成は、 太陽光を利用して水を分解して酸素分子を放出 するとともに、二酸化炭素から有機物をつくりだ す反応である。約 30 億年まえに酸素発生型の光 合成能を持つシアノバクテリアが出現し、大気中 の酸素濃度を急激的に上昇させ、好気生物の進 化・繁栄を牽引した。そして今日に至るまで地球 上に絶え間なく降り注いでいる太陽の光エネル ギーは糖の形として化学エネルギーへと変換さ れ、ほぼすべての生物の生存維持に必要なエネル ギー供給源となっている。光化学系 I(PSI)は光エ ネルギーを利用してプラストシアニンからフェ レドキシンへの電子伝達を仲介し、糖合成に必要 となる還元力である NADPH の供給を担ってい る。

シアノバクテリアの出現から高等植物の繁栄 に至るまで、生物は酸素発生型の光合成の効率と 性能を巧みに進化させた。天候の変化により太陽 光の照射量は大きく変動するが、植物には雨の日

*解説特集「光化学系の構造・モデル計算から見えてきた光合 成反応の妙」

*連絡先 E-mail: msuga@okayama-u.ac.jp

でも光合成ができる光エネルギー利用の効率の 良さだけでなく、 真夏の太陽光でもタンパク質 を損傷させないために光エネルギーを積極的に 捨てることも必要になる。(なお、光化学系 II の強光順化メカニズムに関しては本誌に掲載さ れた得津隆太郎会員の解説記事 ¹⁾を参照された い。) 光化学系は電荷分離反応を行う反応中心 コア部分を厳密に保存しつつ、前述したような高 度に制御された光エネルギーの利用を実現する ためにアンテナ系タンパク質複合体を獲得した。 シアノバクテリアの PSI は三量体として存在す るのに対し²⁾、植物の PSI は単量体として存在 して光捕集アンテナ I 複合体 (LHCI)と分子量 60 万におよぶ PSI-LHCI 超複合体を形成する³⁾。

これまでの分光学的および生化学的な研究から、植物のLHCIは4つの膜タンパク質サブユ ニットLhca1~Lhca4から構成される複合体であ り、Chla、Chlb、複数種のカロテノイドを適切に 配置してエネルギーを高い効率で伝達するだけ でなく、蓄積されたエネルギーを熱として散逸さ せるしくみも備えもつことが明らかにされてい る。筆者らはこのエネルギー伝達の構造基盤を明 らかにすることを目的とし、エンドウマメ P. sativum var. Alaska の葉から単離した PSI-LHCI 超複合体を結晶化し、大型放射光施設 SPring-8 の高輝度X線により2.8Å分解能で構造解析した 4.5)

2. 植物 PSI-LHCI 超複合体の全体構造

図1. 植物 PSI-LHCI 超複合体の結晶構造

(A) 膜面に平行な方向および(B) 垂直な方向からみたもの。(C) タンパク質複合体中の補因子のみを(B) と同じ方向であらわしたもの。反応中心およびエネルギー伝達に関わる各 Lhca サブユニットにおける Chl 二量体(a603 と a609)を赤色であらわす。文献⁵より引用。

PSI-LHCI 超複合体は Lhca1~Lhca4 の 4 つの LHCI サブユニットに加え、反応中心コア部分を 構成する9つの膜貫通サブユニット(PsaA, PsaB, PsaF~PsaL) および 3 つの表在性サブユニット (PsaC~PsaE) からなる計 16 個のサブユニット から構成され、長さ140Åの親骨をもつ扇子のよ うな構造をしている(図1)。この構造解析によ り、PSI-LHCI 超複合体に含まれる、143 個の Chla、 12 個の Chlb, 35 個のカロテノイド(26 個の B カ ロテン、5個のルテイン、4個のビオラキサンチ ン)、10個の脂質分子(6個のホスファチジルグ リセロール、3個のモノガラクトシルジアシルグ リセロール、1個のジガラクトシルジアシルグリ セロール)、3 個の Fe₄S₄クラスター、2 個のフィ ロキノンの正確な位置と配向が明らかになった。 これらの Chl およびカロテノイドの数は、結晶化 された標品を用いた HPLC 分析やこれまでの生 化学的な実験の報告とも一致したことから、超複 合体内のほぼすべての集光性色素を同定するこ とに成功したと考えられる。これまでの構造解析 3,6,7)とは異なり、筆者らの構造では分解能が改善 されて Chla と Chlb の区別ができたことにより LHCI から反応中心コア部分へのエネルギー伝達 の経路を特定し、カロテノイドの種類を特定した ことでキサントフィル回路に関与するビオラキ サンチンの結合箇所を明らかにして機能の理解 に大きく貢献した。

3. LHCI を構成する Lhca サブユニットの構造

全ての Lhca サブユニットは 3 本の膜貫通へ リックス A、B、C とルーメン側に存在する両親 媒性へリックス D から構成され、同じ LHC ファ ミリーである LHCII^{8,9)} や CP29¹⁰⁾と共通の フォールディングをしている(図 2)。しかしア ミノ酸の保存性の低い領域である、AC ループ(膜 貫通へリックス A と C を繋ぐループ構造)およ び BC ループ(膜貫通へリックス B と C を繋ぐ ループ構造)、そして N 末端部分では各 Lhca サ ブユニット間で構造は異なる。反応中心コア部分 はこれらの Lhca サブユニットの構造的な特徴を うまく判別して超複合体を形成する。このとき反 応中心コア部分が各 Lhca サブユニットと相互作

用する面積は Lhca1~Lhca4 において 357、131、 638、340 (Å²) であり、Lhca1 と Lhca3 (Lhca1/3) とは強く、Lhca2 と Lhca4 (Lhca2/4) とは弱く相 互作用している。AC ループは Lhcal では他の Lhca2/3/4 と比べてずっと短く、むしろ LHCII や CP29 に近い。同様に BC ループも Lhca1 にのみ LHCII や CP29 と共通した両新媒性ヘリックス E を持つが、Lhca2/3/4 にはない。Lhca1のACルー プおよび BC ループにおけるこれらの特徴的な領 域は反応中心コア部分のサブユニットである PsaG と相互作用しており、Lhca1 以外の Lhca サ ブユニットを Lhcal のところに仮に配置すると 立体的な衝突が起こり超複合体を形成できない。 またN末端領域ではLhca1/2/4は良く似た構造を していたがLhca3には短いヘリックスFが新しく 見つかった。この Lhca3 の特有の N 末端領域は 反応中心コア部分のサブユニットである、PsaA および PsaK と相互作用しており、さらに Lhca3 の膜貫通ヘリックス BのN末端側はひと巻き分

図 2. Lhca サブユニットの構造

4 つの Lhca サブユニットを重ね合わせた。Lhcal を緑、Lhca2 をシアン、Lhca3 を紫、Lhca4 を黄で 表 し(A) LHCI の外側の方向および (B) 反応中心コ ア部分の方向からみたもの。(C) は AC ループ部 分、(D)は BC ループ部分、(E) は N 末端の部分を 拡大したもの。文献⁴⁾のものを改変して引用。 が短くなってループ構造となり PsaA との相互作 用を強めている。この膜貫通へリックス B の N 末端側と反応中心コア部分とのストロマ側での 相互作用はいずれの Lhca サブユニットにおいて も共通して見られ、Lhca1 は PsaB を、Lhca2 は PsaJ を、Lhca3 は PsaA を、Lhca4 は PsaF をうま く認識することで超複合体を形成する。

PSI-LHCI 超複合体におけるエネルギーの伝達 の効率はほぼ100%といわれている11)。すなわち、 弱光条件でLHCIが吸収した全ての光エネルギー は励起エネルギーとして反応中心コア部分に導 かれ電荷分離反応が起こることになる。この励起 エネルギー伝達のための経路についてはさまざ まな議論がなされているが、今回決定した PSI-LHCI 超複合体の結晶構造は反応中心コア部 分とLHCIとのあいだに存在している集光性色素 の正確な位置を明らかにしたことで、これまで蓄 積されてきた分光の実験結果を説明しうる分子 基盤を提供した。さらに集光性色素の配置に基づ きこれまでは不確定であったエネルギー伝達の 経路を特定した。ここでエネルギー伝達の経路を 議論するにあたり、最も低いエネルギー準位を持 つ、すなわち、エネルギーを効率的に捕捉するこ とのできる Red Chl に注目する。真核生物の PSI-LHCI 超複合体では Red Chl のほとんどが各 Lhca サブユニットに存在している Chl a603 と a609 の Chl 二量体であるとされている。確かに Lhca1~4 におけるいずれの Chl a603-609 におい ても Chl のテトラピロール環の C 環と E 環が平 行に並び重なり、周囲に集光性色素を配置して効 率よくLHCI内の光エネルギーを集めることので きる構造をしている。さらにこれら二量体 Chl は LHCI の内側部分に結合し、Chl のフィトール 鎖を反応中心コア部分に向かって大きく突き出 すようにして固定され、励起エネルギーを伝達す るのに合理的な構造をとっていると考えられる。 ただし、それぞれの Lhca サブユニットは共通す るフォールディングと集光性色素の配置を持つ ものの、前項で述べたように反応中心コア部分と の相互作用の強さには差異があり、それゆえ、そ れぞれの Lhca サブユニットから反応中心コア部 分へのエネルギー伝達の効率は異なる。筆者らは

図3. 励起エネルギーを伝達する経路 ストロマ側の経路を水色、ルーメン側の経路を赤 色の矢印で示す。矢印の太さは伝達の効率を表す。 文献⁵⁰のものを改変して引用。

これらの相互作用の強さに基づき、励起エネル ギーはおもに Lhca1 と Lhca3 サブユニットから、 それぞれ PsaB と PsaA サブユニットへと膜の両 面において伝達されていることを提唱した(図 3)。これらのうち、前述の二量体 Chl はストロ マ側の 1Bs パスおよび 3As パスにおいて機能し ており、ルーメン側は二量体 Chl を必要としない 1Blパスおよび 3Alパスが存在している。(なお、 これらパスの命名方法は Lhca サブユニット名-Psa サブユニット名-ストロマ側かルーメン側か に従っている。)これらパスにおける LHCI と反 応中心コア部分との Chl 同士の最短の距離は 1Bl パスが 5.5 Å、1Bs パスが 7.5 Å、3Alパスが 5.8 Å、 3As パスが 10.2 Å である。

1BI パスは Lhca1 の Chl b607 から PsaB の 3 つ の Chl (a1231、a1232、a1233) へと繋がるルー メン側の経路で、最短の Chl 間の距離は 5.5 Å で ある。興味深い事に、これら 3 つの Chl (a1231、 a1232、a1233) はシアノバクテリア PSI では Red Chl であると提案されており²⁾、このうち a1233 は植物の反応中心コア部分ではシアノバクテリ アと比べてその位置と配向を大きく変化させ、 Lhca1 の b607 からのエネルギー伝達を行うのに 理想的な場所に存在している。ただし通常は Chla から Chlb へのエネルギー伝達はそれほど効率的 ではないため、この b607 はエネルギー伝達を制 限しているか、あるいは状況に応じて、この部位 に結合する Chl は Chla と Chlb の両方が使い分け られている可能性が考えられる。

1Bs パスは Lhca1 の二量体 Chl に集められたエ ネルギーを PsaB の 3 つの Chl (a1218、a1219、 a1802)へと伝達するストロマの側の経路で、最 短の Chl 間の距離は 7.5 Å である。このうち、 Chl a1802 はシアノバクテリアの PSI には見られず、 植物反応中心コア部分で新規に獲得された Chl である。周辺の PsaB の膜貫通ヘリックス d と e をつなぐループ領域(Ala307~Gly318)も大きく 構造が変化しており、シアノバクテリアと比べて PsaB 側に約 60 度、10 Å 近く PsaB 側にフリップ している。さらにシアノバクテリア Synechocystis PSI コア単量体の結晶構造解析から a1802 の結合 サイト近くでは Chl a40 が見つかっており¹²⁾、Chl a40 を含む Chl の 3 量体 (a1218、a1219、a40) がRed Chlとして機能する可能性も提案されてい る。以上をふまえると 1Bs パスは特に効率の良い 経路であると考えられる。

Lhca3 から PsaA の Chl 間の距離は、ルーメン 側では 5.8 Å、ストロマ側では 10.2 Å となってお り、それぞれ 3Al パス・3As パスを形成している。 3Al パスは二量体 Chl を必要としない、他の Chl からエネルギーを PsaA 側に伝達する経路であり、 Lhca2 で吸収された励起エネルギーもこの経路 を通る可能性が考えられる。一方で 3As パスは エネルギーの殆どが二量体 Chl を経由すると考 えられ、特に効率よく機能していると考えられる。 以上のように我々は構造に基づきエネルギーの 伝達経路を提唱したが、これまでの低分解能の結 晶構造^{3,6,7)}と筆者らの結晶構造の決定的な違い は LHCI と反応中心コア部分との間である、 "ギャップ部分"に存在するギャップChlの数がは るかに少ないことである。 筆者らの構造とほぼ 同じ時期に発表された2.8 Å分解能の結晶構造¹³⁾ でもギャップ Chl の数は同様に少ないため、筆者 らの結晶構造でギャップ Chl の数が少ないこと は決して精製方法や結晶化方法の違いではなく 本来の構造を反映していると考えられる。これま でのキネティクスの解析や理論計算はギャップ Chlを余分に多く含んでいる結晶構造に基づいて

いるため、これらの実験結果は再度検証する必要 があるかもしれない。

4. LHCI におけるカロテノイドの配置とその機能

Lhca1~Lhca4 サブユニットはそれぞれが 3~4 個のカロテノイドを結合しており、LHCI には全 部で13個のカロテノイドが結合している(図4)。 高分解能で構造解析されている同じ LHC ファミ リーの LHCII では 4 つのカロテノイドの結合部 位が同定され、膜貫通ヘリックス A および膜貫 通ヘリックス B が形成する溝にルテインを結合 するL1部位およびL2部位、膜貫通ヘリックスC の近傍にネオキサンチンを結合する N1 部位、隣 接する LHCII との境界にビオラキサンチンを結 合する V1 部位が存在する。LHCI においては、 いずれの Lhca サブユニットにおいても L1 部位 にルテイン、L2 部位にビオラキサンチン、N1 部 位に BCR が結合していたが、V1 部位にはカロテ ノイドは何もみつからず、Lhcal のみ新規の L4 部位にルテインが結合していた(図4)。

本研究により特定されたカロテノイドうち、本 稿ではキサントフィル回路に関与するビオラキ サンチンについて紹介する。ビオラキサンチンは 強光条件においてビオラキサンチンデエポキシ ダーゼ (VDE) により脱エポキシ化されてゼアキ サンチンとなり、Chl の励起エネルギーを奪い熱 として捨てる。これは過剰な光によってタンパク 質が損傷されるのを防ぐため、過度に光化学反応 が進行して蓄積したルーメン側のプロトンをビ オラキサンチンデエポキシダーゼが感知して負 のフィードバックをかける仕組みであり、キサン トフィル回路とよばれる¹⁴⁾。このような防御機 構はLHCII については古くから知られていたが、 つい最近の報告¹⁵⁾まで、多くの研究者は LHCI ではキサントフィル回路は機能しないと考えて いた。しかし、筆者らの PSI-LHCI 超複合体の結 晶構造ではL2部位にビオラキサンチンが結合し ており、これは LHCI においてもキサントフィル 回路が機能している直接的な証拠となる。さらに 立体構造に基づき Lhca1~Lhca4 サブユニット間

図4. Chl およびカロテノイドの結合サイト 膜に平行 (A) および垂直 (B) な方向から Lhca サブユニットについてステレオ表示であらわし た。数字は Chl の結合サイトをあらわしている。 文献⁴⁾のものを改変して引用。

でのキサントフィル回路の効率の違いについて も考察する。

L2 部位は膜貫通ヘリックスAとBが形成する 溝のうち LHCI の内側、すなわち反応中心コア部 分の側にある。サブユニット同士が接触する面積 から判断される反応中心コア部分とLHCIと間の 相互作用はLhca1/3では強く,Lhca2/4では弱いた め、反応中心コア部分と LHCI との間のルーメン 側には深い間隙がある。この間隙の存在から、 VDEのL2部位へのアクセスはLHCIの中央のサ ブユニットである Lhca2/4 の方が LHCI の側面に あるLhca1/3よりも容易であることが示唆される。 また、ビオラキサンチンのルーメン側は3個の Chl (a604, a/b606, a/b607) によって囲まれてお り、これらは BC ループによって塞がれている。 そのため VDE が L2 部位のビオラキサンチンを 脱エポキシ化するにはBCループが開く必要があ ると考えられる。Lhca2/4のBCループは21アミ ノ酸で構成され、Chl b607 への結合は水分子を介 している。これに対し Lhca1/3 の BC ループは PSI コアと相互作用するため Lhca2/4 と比べて 10 アミノ酸余分に長くなっており、Chl a/b607 を直 接結合している。さらに Lhca2/4の BC ループの

方が 10 アミノ酸分短いにも関わらず、ルーメン 側に晒されている酸性アミノ酸の数が多い。これ らの構造的差異から Lhca2/4 の BC ループの方が 構造変化し易く、またルーメン側の酸性化を感知 し易いことが示唆されるので Lhca2/4 では Lhca1/3 と比べてキサントフィル回路は活発であ ると推察される。さらに、Lhca2/4 と Lhca1/3 で はビオラキサンチンとの水素結合の様式にも違 いが見られる。ビオラキサンチンのルーメン側の 端部は Lhca2/4 では Trp 127 (Lhca2)、Trp 126

(Lhca4) と水素結合しているのに対し、Lhca1/3 では Trp 101 (Lhca1) と Trp 130 (Lhca3) に加え, Gln 105 (Lhca1) もしくは Thr 133 (Lhca3) とそ れぞれ水素結合を形成している。これは Lhca2/4 の L2 部位の方がビオラキサンチンとの親和性が 低いことが推察され、このことからも LHCI の中 央のサブユニットにおいてキサントフィル回路 が活発であることが示唆される⁵。

6. おわりに

本研究により、高等植物の PSI-LHCI 超複合体 の詳細な構造が明らかになった。立体構造にもと づき、どのようにして巨大な超複合体が形成され るか、そして励起されたエネルギーはどの経路を 通って反応中心コア部分へと導かれるか、など超 複合体に関する長年の疑問に答えただけでなく、 L2 部位に結合するビオラキサンチンがキサント フィル回路により非光化学的消光の役割を担っ ているという新たな提案も行った。これらの構造 基盤は、光エネルギーをより効率良く利用するこ とのできる新規のエネルギー変換材料のモデル テンプレートともなることが期待される。

謝辞

本研究は岡山大学異分野基礎科学研究所の沈 建仁、中国科学院植物研究所の Xiaochun Qin、 Tingyun Kuang 諸氏との共同研究である。X 線結 晶構造解析データは SPring-8 の BL41XU および BL44XUにて測定した。この場を借りてお礼申し 上げる。また本研究は科学研究費補助金等の助成 を受けて行った。 Received March 3, 2017; Accepted March 29, 2017; Published April 30, 2017

参考文献

- 得津 隆太郎 (2016) 光合成における強光順化 メカニズム研究の新展開 光合成研究 26,36-42.
- Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W., and Kraus, N. (2001) Three-dimentional structure of cyanobacterial photosystem I at 2.5 Å resolution. *Nature* 411, 909–917.
- Ben-Shem, A., Frolow, F. and Nelson, N. (2003) Crystal structure of plant photosystem I. *Nature* 426, 630–635.
- Qin, X., Suga, M., Kuang, T. and Shen, J.R. (2015) Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex *Science* 348, 989–995.
- Suga, M., Qin, X., Kuang, T. and Shen J.R. (2016) Structure and energy transfer pathways of the plant photosystem I-LHCI supercomplex. *Curr. Opin. Struc. Biol.* 39, 46–53.
- Amunts, A., Drory, O. and Nelson, N. (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. *Nature* 447, 58–63.
- Amunts, A., Toporik, H., Borovikova, A. and Nelson. N. (2010) Structure determination and improved model of plant photosystem I. J. Biol. Chem. 285, 3478–3486.
- Kuhlbrandt, W., Wang, D.N. and Fujiyoshi, Y. (1994) Atomic model of plant light-harvesting complex by electron crystallography. *Nature* 367, 614–621.
- Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X. and Chang W. (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. *Nature* 428, 287–292.
- Pan, X., Li, M., Wan, T., Wang, L., Jia, C., Hou, Z., Zhao, X., Zhang, J. and Chang, W. (2011) Structural insights into energy regulation of light-harvesting complex CP29 from spinach. *Nat. Struct. Mol. Biol.* 18, 309–315.
- Nelson, N. (2009) Plant Photosystem I The Most Efficient Nano-Photochemical Machine. J. Nanosci. Nanotechno. 9, 1709–1713.
- Mazor, Y., Nataf, D., Toporik, H. and Nelson, N. (2014) Crystal structure of virus-like photosystem I complexes from the mesophilic cyanobacterium *Synechocystis* PCC 6803. *eLife* 3, e01496.

光合成研究 27(1)2017

- Mazor, Y., Borovikova, A. and Nelson, N. (2015) The structure of plant photosystem I super-complex at 2.8 Å resolution. *eLife* 4, e07433.
- Niyogi, K.K., Grossman, A.R. and Bjorkman, O. (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. *Plant Cell* 10, 1121–1134.
- Ballottari, M., Alcocer, M.J., D'Andrea, C., Viola, D., Ahn, T.K., Petrozza, A., Polli, D., Fleming G.R., Cerullo, G. and Bassi, R. (2014) Regulation of photosystem I light harvesting by zeaxanthin. *Proc. Natl. Acad. Sci. U.S.A.* 111, E2431–2438.

Crystal structure and energy transfer pathways of the plant photosystem I-light harvesting complex I supercomplex

Michihiro Suga*

Research Institute for Interdisciplinary Science, Okayama University

報告記事

第2回光合成細菌ワークショップ開催報告

久留米大学医学部

原田 二朗

「様々な分野で活躍する光合成細菌の研究者が集まる場が無いので、それを作りたい」という思い があり、昨年の植物生理学会年会の関連集会で第1回光合成細菌ワークショップを企画しました。世 話人は浅井智広さん(立命館大)、塚谷祐介さん(東工大)と私が務めました。普段年会に参加されない演 者も含めて様々な内容の発表となり、終わった後には多くの方から反響がありました。そのため今年 の年会でも、同世話人によって第2回目を企画し、5名の方に講演を依頼して開催しました。参加者は 32名でした。

前半の最初は、東工大の増田真二先生に、光合成細菌のレドックスセンサーを利用した硫化水素・活 性硫黄分子種インジケータおよびシアノバクテリアの光受容体を応用した遺伝子発現光制御技術の開 発について話していただきました。次の明治大の鬼沢あゆみ先生には、ご自身のシアノバクテリアの 脂肪酸代謝の研究内容を発表していただき、そこから光合成細菌の脂肪酸代謝との関連について考察 していただきました。立命館大の学生の寺村美里さんには、これまで行ってきた緑色硫黄細菌のアン テナ色素の生合成系の研究について発表していただきました。後半は、新潟大の三好智博先生に、哺 乳類で研究が進んでいる RNA 干渉の中心タンパク質である Argonaute が、光合成細菌にも保存されて おり、その分子機構がユニークであることから多様性を含めて議論していただきました。最後は首都 大の福島俊一先生に、糸状性好熱性光合成細菌の滑走運動中の移動方向転換について発表していただ きました。この様に普段は互いに聴けない多種多様な発表があったためか、会場の議論は盛り上がり ました。引き続いて始まった親睦会も、発表内容や参加者自身の研究などの熱心な会話が何処からも 聞こえており、楽しい時間を過ごすことができました。

この様な場で開催報告を世話人が書かせていただいているので、今回のプログラム編成で意識した ことや感じたことを少し述べたいと思います。

光合成細菌の専門家と非専門家の両方に興味を持ってもらえるように、プログラムは世話人同士で 何度も議論しながら組みました。昨年は「光合成とそれ以外」という認識で組みましたが、今年は応 用、脂肪酸合成、色素合成、哺乳類、運動と、それぞれに関連性があまり無い演題を選びました。正 直、そうなってしまった部分もありますが、関連性が無くても違和感なく発表を聴くことができまし た。これは、光合成細菌を題材としているという一貫性があったからだと考えています。一見すると 関連がないような演題を組めるというのは、異なる分野や非専門家の参加者を募るのに有効だと感じ ました。また、いつもは年会に参加されない方に講演を依頼したことにより、質疑応答や懇親会など で、積極的な異分野交流が生まれているように見えました。この辺りは昨年度もそうして多くの方が 面白いと感じた部分でしたので、今年も意識しました。今後、参加者同士で共同研究などの発展に繋 がれば、企画した方も嬉しく思いますし、その様な研究者同士の出会いの場の提供は、本ワークショッ プ開催の趣旨の1つでもあります。あともう一つ考慮したのは、学生や若手研究者に講演依頼したこ とです。光合成細菌研究の将来を盛り上げていってくれることに期待しています。 光合成細菌の研究の発展のため、今後もしばらく同様にワークショップを企画していたいと考えて います。来年の札幌での年会でも試行錯誤しながら、第3回目のプログラムを作って行きたいと思い ます。そのためには、最新の研究に触れ、常にアンテナを張りながら、日々の研究活動に専念するこ とが重要だと感じています。

第73回 藤原セミナー

The 4th International Conference "Molecular Life of Diatoms" 開催のお知らせ

日時:2017年7月9日(日)15:00 ~ 7月13日(木)15:00 場所:生田神社会館 〒650-0011 兵庫県神戸市中央区下山手通1丁目2-1 詳細・参加申し込み:http://sci-tech.ksc.kwansei.ac.jp/~matsuda/MLD4/ 主催:The International Conference, "Molecular Life of Diatoms" (MLD) 準備委員会 問い合わせ先:関西学院大学 松田 祐介 (yusuke@kwansei.ac.jp)

珪藻の分子研究は現在、海洋学、生態学、および植物生理学にまたがる境界領域を形成し つつありますが、その中心課題として海洋光合成の謎に迫る研究も急速に展開しています。 また、ケイ酸材料源や油脂化合物源としても注目を浴びている極めてユニークで重要な研究 対象です。

本会議は2011年アトランタ開催を嚆矢に、パリ(2013年)、シアトル(2015年)とつづき、今回初めて欧米以外での開催となります。非常に幅広いトピックを幅広い分野の研究者が、珪藻+分子というキーワードで貫通する学術集会ですが、光合成研究者も様々な発見がある大変面白い会議です。

詳細は標記ウエブサイトをご覧下さい。

松田 祐介 (関西学院大学)

8th International Conference "Photosynthesis and Hydrogen Energy Research for Sustainability -2017"の開催案内

期日: 2017 年 10 月 30-11 月 4 日 場所:インド、ハイデラバード大学

昨年、ロシア・モスクワ郊外の Pushchino で開催された会議に引き続き、本年 10 月 30-11 月4日にインドのハイデラバード大学にて上記会議が催されます。本国際会議は今回が 8 回 目の開催になり、2013年からは毎年開催しています。ハイデラバードはインド中南部の都市 で日本からの渡航は少なくとも1回の乗り継ぎが必要です。本会議の第1回目は 2004年にカ ナダ、ケベック州 Trois-Rivières で"In honor of Norio Murata (村田先生の名誉を讃える記念)"と して行われたのを原点としていることから毎回多数の日本からの参加者があり、近年は毎回 Young Talent 賞・Poster 賞を日本人参加者が受賞しています。今回は Prof. Govindjee (イリノ イ大学)、Prof. W. A. Cramer (パデュー大学)、Prof. A. S. Raghavendra (ハイデラバード大学) の業績に敬意を表して開催されます。なお、インドへの渡航は Visa が必要になるので御留意 ください。昨年より、Visa on Arrival 制度も適用されています。

今回も多くの方々に参加、御発表(ロ頭及びポスター発表)頂き、活発なディスカッションができますようにお願い申し上げます。学生・ポスドクの参加者も大歓迎しています。Visa申請(公的)の締切りは9月10日、参加登録・要旨の締切りは9月20日です(2017年3月1日時点)。例年国際ジャーナルに特集号が掲載されており、今回も同様の予定です。

討論のセクションは大きく二つに分かれており

1. 光合成(基礎から応用まで人工光合成を含む光合成科学全ての領域)

2. 水素エネルギー(ヒドロゲナーゼ等による水素生産やバイオフュエル等)

となっています。 詳しくは下記ウエブサイトを御覧ください。

https://prs.science/

御不明な点がございましたら、御遠慮なくお問いあわせください。

東京理科大学 鞆 達也 (本会議の事務局を担当)

第25回「光合成セミナー2017:反応中心と色素系の多様性」の開催案内

期日: 2017年(平成 29年)7月15日(土)午後2時から16日(日)午後4時まで

場所:神戸大学百年記念会館(http://www.kobe-u.ac.jp/guid/access/rokko/rokkodai-dai2.html) (交通)阪急電車「六甲」駅、JR西日本「六甲道」駅、または、阪神電車「御影」駅から市バス 36系統「鶴甲団地」行に乗車「神大文理農学部前」下車。

開催の目的:光合成に関して、物理学、化学、生物学を融合した討論を行う。光合成の進化、物 質変換、人工光合成などについても討論する。第一線の研究者に専門分野の解説をしていただく とともに、参加者の口頭・ポスター発表を行う。

協賛:日本光合成学会

内容:

- 25周年記念講演会 大岡 宏造(大阪大学)「光合成細菌タイプ1反応中心の研究の現状」 高市 真一(東京農業大学)「カロテノイド研究 30 余年」 田中 歩(北海道大学)「クロロフィル代謝の機能と進化」
 10頭発表 (討論を含めて、一人 10 分から 15 分を予定)
 ポスター発表 (3 分程度のポスタープレビューも併せて行う)
 申込:発表申し込み締め切り 2017年(平成 29 年)6月 30 日(金) 参加申し込み締め切り 2017年(平成 29 年)6月 30 日(金)
- 参加費: (7月15日の懇親会費、7月16日の昼食代を含む) 一般 5,000円(予定)
 - 学生 3,000 円 (予定)

世話人:秋本 誠志(神戸大学)、大岡 宏造(大阪大学)、大友 征宇(茨城大学)、 出羽 毅久(名古屋工業大学)、永島 賢治(神奈川大学)、宮武 智弘(龍谷大学) 申し込み・問い合わせ先: 神戸大学大学院 理学研究科 秋本 誠志 (E-mail: photosynthesis@boar.kobe-u.ac.jp, Tel: 078-803-5705)

プログラムおよび今後の案内は下記ホームページにて、更新情報を随時、掲載いたします。

http://www.bio.sci.osaka-u.ac.jp/~ohoka/photosyn_seminar_2017/top.html

宿泊:セミナー期間中は連休となりますので、早めにホテルを予約してください。 その他:光合成生物の進化も含めた光反応・色素系の基礎から応用までを幅広く議論し、異分野 の学生・研究者が楽しく交流できる場を提供していきたいと考えています。また新しい研究テー マや方向性のヒントが得られることも期待しています。今後の運営・内容等に関してご意見等が ありましたら、遠慮無くメール(上記メールアドレス宛)をいただければ幸いです。

報告記事

若手の会の幹事の交代のご報告

立命館大学 生命科学部 生命情報学科

浅井 智広

若手の会は、日本光合成学会に所属する若手研究者の有志によって発足し、2009年10月から活動を始めました。2013年6月から私が会長として活動してきました。これまでの幹事は 主に発足時の有志であり、積極的に運営に関わってきました。当時はほぼ全員がポスドクレ ベルの初々しい若手研究者という立場でしたが、時が経つにつれてPIとなってラボを運営す る者も増え、その立場は熟練の中堅研究者のようなイメージに自然と変わってきました。前 号の会報でもお知らせしていた通り、若手の会の"若手研究者の集まり"というフレッシュな イメージを維持していくため、この4月号の会報での活動報告をもって、若手の会はその運 営体制を一新します。現幹事および前回の研究セミナーの参加者からは既に快い賛同が得ら れています。母体である日本光合成学会の会員の皆様にも、本会の次年度年会の総会の折に ご報告させていただきたいと思います。具体的な新幹事は以下の方々(敬称略)にお願いし ました。

会長:	榎本	元	(東京大学・助教)
幹事:	斉藤	圭亮	(東京大学・講師)
	嶋川	銀河	(神戸大学)
	清水	隆之	(東京工業大学)
	神保	晴彦	(埼玉大学)
	高橋	拓子	(埼玉大学・助教)
	溝上	祐介	(CNRS)
	森田	隆太郎	(神戸大学)
	横山	諒	(岡山大学、ウィスコンシン大学マディソン校)
	渡辺	麻衣	(東京大学)

実年齢が若い学生を中心に、幅広い研究分野の方々に幹事をお願いしました。今後の若手 の会の活動は、これまでの7年間の活動内容に縛られず、一新した幹事による"新手の会"の フレッシュな方針に委ねたいと思います。既に新幹事によって新しい活動の提案が複数挙げ られ、その溢れるパワーに驚いています。これまでの会報で私が書き続けたことですが、現 場の研究を推進している研究者が積極的に交流することが学際性の強い光合成研究では絶対 不可欠です。この記事を読んで興味を持たれた方は、是非、新幹事の若手の会の活動にご参 加下さい。この点はこれまでの若手の会と変わらず、新幹事による若手の会も、実年齢や身 分、所属を問わず、多くの方々の参画を歓迎してくれるはずです。

若手の会新会長からのごあいさつ

東京大学 大学院総合文化研究科 広域科学専攻 榎本 元

はじめまして、東京大学大学院・総合文化研究科・池内研究室・助教の榎本元と申します。 光合成学会若手の会の二代目会長である浅井さんより引き継ぎ、三代目の会長を務めるこ とになりました。よろしくお願いいたします。

私は学部時代、当時の会長(初代)だった成川さんのお手伝いをするかたちで、初めて光 合成学会若手の会に参加しました。研究者として右も左もわからなかった昔の自分にとって、 初めて研究者というものを間近に感じることのできる機会だったように思います。あれから 5年ほどたち、まさか自分がその会長になる日がくるとは思ってもいませんでした。巡り合 わせの妙を感じます。

私はシアノバクテリアを研究対象に、主として光受容体に着目することで、光応答機構を 分子レベルで理解することに興味を持ち、研究しております。いわゆる「光合成の研究者」 ではありません。ですが、光合成学会若手の会はそんな私にも会長を務める機会をいただけ る、ふところの深いコミュニティであると感じております。実際、光合成学会若手の会には 様々なバックグラウンドをもった研究者が参加しています。自分とは異なる、様々な視点を もった研究者と交流することで、新たな発見がある楽しい会です。新メンバーに運営が移っ ても、その良い雰囲気は継続していければと思っています。

今回の幹事交代では全てのメンバーが一新され、一気に平均年齢が下がりました。具体的 に光合成学会若手の会がどうなっていくのか、具体的な見通しは全く立っていません。新幹 事の間で密に連携を取りながら、ときに旧幹事に応援を求めつつ、新たな光合成学会若手の 会として活発に活動していけたらと思います。幹事は世代交代を行いましたが、参加に年齢 制限などありません。私達より上の世代の方々にも、これまで以上に積極的に若手の会へ参 加していただければ幸いです。本会にも劣らない活発な研究交流を行い、若い世代から光合 成研究を盛り上げていきたいと思います。

最後に、若輩者で色々と至らないところもあるかとは思いますが、精一杯がんばります。み なさまには、温かい目で見守りつつ、アドバイスいただければ幸いです。今後ともよろしく お願いいたします。

(若手の会からのお知らせ)

第8回日本光合成学会年会2日目の後には、16時より同キャンパス9号館大会議室にて若 手の会セミナーを開催致します。演者等の詳細は、追ってメーリングリストなどでご周知し ます。若手の会では本年度より幹事を一新し、新体制での最初のセミナーになります。これ まで若手の会に参加したことがなかった学生や若手の研究者の方々も、ぜひこの機会にご参 加いただければ幸いです。また、この記事を読んでいただいた先生方には、ご自身の参加の 検討だけでなく、ご指導中の学生やポスドクの方に若手の会への参加を是非お勧めいただき たいと思います。

事務局からのお知らせ

★入会案内

本会へ入会を希望される方は、会費(個人会員年会費:¥1,500、賛助法人会員年会費: ¥50,000)を郵便振替(加入者名:日本光合成学会、口座番号:00140-3-730290)あるいは銀 行振込(ゆうちょ銀行、019店(ゼロイチキュウと入力)、当座、0730290 名前:ニホンコ ウゴウセイガッカイ)にて送金の上、次ページの申し込み用紙、または電子メールにて、氏 名、所属、住所、電話番号、ファックス番号、電子メールアドレス、入会希望年を事務局ま でお知らせください。

★会費納入のお願い

学会の運営は、皆様に納めていただいております年会費によりまかなわれております。当 該年度の会費が未納の場合、光合成研究が送られてくる封筒に、会費未納が印字されていま す。ご都合のつくときに、会費を納入ください。1年間会費を滞納された場合、次年度より お名前が会員名簿から削除され、光合成研究は届かなくなります。再入会される場合は、未 納の分もあわせてお支払いいただきます。会費納入状況などにつきましては、ご遠慮なく事 務局(sonoike@waseda.jp)までお問い合わせください。会員の皆様のご理解とご協力をお願 い申し上げます。

日本光合成学会会員入会申込書

平成 年 月 日 日本光合成学会御中 私は日本光合成学会の趣旨に賛同し、平成 年より会員として入会を申し込みます。 []内に会員名簿上での公開承諾項目に○印をつけてください [] 氏名(漢字)(必須) 氏名(ひらがな) 氏名 (ローマ字) [] 所属 [] 住所1 Ŧ [] 住所2(自宅の方または会誌送付先が所属と異なる場合にのみ記入) ₹ [] TEL1 [] TEL2(必要な方のみ記入) [] FAX [] E-mail 個人会員年会費 1,500円(会誌、研究会、ワークショップなどの案内を含む) 50,000円(上記と会誌への広告料を含む) 賛助法人会員年会費 (振込予定日:平成 年 月 日) (会員資格は1月1日~12月31日を単位とします) * 複数年分の会費を先払いで振り込むことも可能です。その場合、通信欄に(何年度~何年度分) とお書き下さい。 連絡先 〒700-8530 岡山県岡山市北区津島中 3-1-1 岡山大学 異分野基礎科学研究所 高橋裕一郎 研究室内 日本光合成学会 TEL: 086-251-7861 FAX:086-251-7876 ホームページ: http://photosyn.jp 郵便振替口座 加入者名:日本光合成学会 口座番号:00140-3-730290 銀行振込の場合 ゆうちょ銀行、019店(ゼロイチキュウと入力)、当座、0730290 名前:ニホンコウゴウセイガッカイ

日本光合成学会会則

第1条 名称

本会は日本光合成学会(The Japanese Society of Photosynthesis Research)と称する。

第2条 目的

本会は光合成の基礎および応用分野の研究発展を促進し、研究者相互の交流を深めることを目的とする。

第3条 事業

本会は前条の目的を達成するために、シンポジウム開催などの事業を行う。

第4条 会員

1. 定義

本会の目的に賛同する個人は、登録手続を経て会員になることができる。また、団体、機関は、賛助 会員になることができる。

2. 権利

会員および賛助会員は、本会の通信および刊行物の配布を受けること、本会の主催する行事に参加す ることができる。会員は、会長を選挙すること、役員に選出されることができる。

3. 会費

会員および賛助会員は本会の定めた年会費を納めなければならない。

第5条 組織および運営

1. 役員

本会の運営のため、役員として会長1名、事務局長1名、会計監査1名、常任幹事若干名をおく。役 員の任期は2年とする。会長、常任幹事は連続して二期を越えて再任されない。事務局長は五期を越 えて再任されない。会計監査は再任されない。

2. 幹事

幹事数名をおく。幹事の任期は4年とする。幹事の再任は妨げない。

3. 常任幹事会

常任幹事会は会長と常任幹事から構成され、会長がこれを招集し議長となる。常任幹事会は本会の運 営に係わる事項を審議し、これを幹事会に提案する。事務局長と会計監査は、オブザーバーとして常 任幹事会に出席することができる。

4. 幹事会

幹事会は役員と幹事から構成され、会長がこれを招集し議長となる。幹事会は、常任幹事会が提案し た本会の運営に係わる事項等を審議し、これを決定する。

5. 事務局

事務局をおき、事務局長がこれを運営する。事務局は、本会の会計事務および名簿管理を行う。

6. 役員および幹事の選出

会長は会員の直接選挙により会員から選出される。事務局長、会計監査、常任幹事は会長が幹事の中 から指名し、委嘱する。幹事は常任幹事会によって推薦され、幹事会で決定される。会員は幹事を常 任幹事会に推薦することができる。

第6条 総会

1. 総会は会長が招集し、出席会員をもって構成する。議長は出席会員から選出される。

- 2. 幹事会は総会において次の事項を報告する。
- 1) 前回の総会以後に幹事会で議決した事項
- 2) 前年度の事業経過
- 3) 当年度および来年度の事業計画
- 3. 幹事会は総会において次の事項を報告あるいは提案し、承認を受ける。

1) 会計に係わる事項

- 2) 会則の変更
- 3) その他の重要事項

第7条 会計

本会の会計年度は1月1日から12月31日までとする。当該年度の経理状況は、総会に報告され、その承認を受ける。経理は、会計監査によって監査される。本会の経費は、会費および寄付金による。

付則

第1 年会費は個人会員 1,500 円、賛助会員一口 50,000 円とする。

第2 本会則は、平成14年6月1日から施行する。

第3 本会則施行後第一期の会長、事務局長、常任幹事にはそれぞれ、第5条に定める規定にかかわ らず、平成14年5月31日現在の会長、事務局担当幹事、幹事が再任する。本会則施行後第一期の役 員および幹事の任期は、平成14年12月31日までとする。

第4 本会則の改正を平成21年6月1日から施行する。

日本光合成学会の役員選出に関する申し合わせ

平成 27 年 5 月 27 日 幹事会

1. 選挙管理委員会

本会の選挙を公正に実施するため、選挙管理委員会を置く。選挙管理委員2名は常任幹事会が幹事会 に推薦し、決定する。選挙管理委員の互選により委員長を選出する。

2. 会長 [会則第5条第6項]

1) 幹事および常任幹事による若干名の候補者の推薦方法

幹事は、会長選挙に推薦する候補者としてふさわしい会員を3名連記で投票する。投票結果が上位の 会員について、常任幹事会は、本人の意向を確認した上で、若干名を推薦候補者として決定する。選 挙事務は事務局長が執り行う。

2) 会長選挙

会長選挙の実施に当たっては、会員に推薦候補者を提示し、全会員による単記無記名投票を実施する。 最高得票者を、次期会長とする。得票数が同数の場合は、抽選により決定する。選挙事務は選挙管理 委員会が執り行う。

日本光合成学会の運営に関する申し合わせ

1. 幹事会

幹事は光合成及びその関連分野の研究を行うグループの主催者である等、日本の光合成研究の発展に 顕著な貢献をしている研究者とする。任期は4年とするが、原則として再任されるものとする。

2. 事務局

事務局長の任期は2年とするが、本会の運営を円滑に行うため、約5期(10年)を目途に再任される ことが望ましい。

3. 次期会長

会長の引き継ぎを円滑に行うため、次期会長の選挙は任期の1年前に行う。

4. 常任幹事会

常任幹事会の運営を円滑におこなうため、次期会長は常任幹事となる。

幹事会名簿

秋本誠志	神戸大学大学院理学研究科	鈴木祥弘	神奈川大学理学部
粟井光一郎	静岡大学学術院理学領域	園池公毅	早稲田大学教育学部
池内昌彦	東京大学大学院総合文化研究科	高市真一	日本医科大学生物学教室
石北 央	東京大学大学院工学研究科	高橋裕一郎	岡山大学異分野基礎科学研究所
泉井 桂	近畿大学生物理工学部生物工学科	田中 歩	北海道大学低温科学研究所
伊藤繁	名古屋大学	田中寛	東京工業大学資源化学研究所
井上和仁	神奈川大学理学部	田中亮一	北海道大学低温科学研究所
伊福健太郎	京都大学大学院生命科学研究科	民秋 均	立命館大学総合理工学院
臼田秀明	帝京大学医学部	都筑幹夫	東京薬科大学生命科学部
榎並 勲	東京理科大学	出羽毅久	名古屋工業大学大学院工学研究科
得平茂樹	首都大学東京大学院理工学研究科	寺島一郎	東京大学大学院理学系研究科
遠藤 剛	京都大学大学院生命科学研究科	鞆 達也	東京理科大学理学部
大岡宏造	大阪大学大学院理学研究科	仲本 進	埼玉大学大学院理工学研究科
大杉 立	東京大学大学院農学生命科学研究科	永島賢治	神奈川大学
太田啓之	東京工業大学	成川 礼	静岡大学大学院理学研究科
	バイオ研究基盤支援総合センター	南後守	大阪市立大学大学院理学研究科
大友征宇	茨城大学理学部	西田牛郎	埼玉大学大学院理工学研究科
大政謙次	東京大学大学院農学生命科学研究科	西山佳孝	埼玉大学大学院理工学研究科
小川健一	岡山県農林水産総合センター	野口航	東京薬科大学生命科学部
• / •••	生物科学研究所	野口 巧	名古屋大学理学研究科
小野高明	茨城大学工学部生体分子機能工学科	長谷俊治	大阪大学蛋白質研究所
小保方潤一	京都府立大学・生命環境科学研究科	林秀則	愛媛大学プロテオサイエンスセンター
小俣達男	名古屋大学大学院生命農学研究科	原登志彦	北海道大学低温科学研究所
垣谷俊昭	名古屋大学	彦坂幸毅	東北大学大学院生命科学研究科
 革子野康浩	兵 <u>市</u> 県立大学理工学部	久堀 徹	東京工業大学研究院化学生命科学研究所
柏山祐一郎	福井工業大学環境情報学部	日原由香子	埼玉大学大学院理工学研究科
金井龍二	埼玉大学	檜山哲夫	埼玉大学
神谷信夫	大阪市立大学大学院理学研究科	福澤秀哉	京都大学大学院生命科学研究科
能崎茂一	京都大学大学院理学研究科	藤田祐一	名古屋大学大学院生命農学研究科
栗柄源嗣	大阪大学蛋白質研究所	古本 強	龍谷大学農学部
小池裕幸	中央大学理工学部	前忠彦	東北大学
小林正美	筑波大学大学院数理物質科学研究科	牧野周	東北大学大学院農学研究科
坂本 百	岡山大学資源生物科学研究所	増田直二	東京工業大学
佐賀佳央	近畿大学理工学理学科		バイオ研究基盤支援総合センター
櫻井英博	早稻田大学	増田 建	東京大学大学院総合文化研究科
佐藤公行	岡山大学	松浦克美	首都大学東京都市教養学部
佐藤直樹	東京大学大学院総合文化研究科	松田祐介	国西学院大学理工学部
佐藤文彦	京都大学大学院生命科学研究科	直野純一	山口大学農学部
鹿内利治	京都大学大学院理学研究科	长川 純	基礎生物学研究所
重岡 成	近畿大学農学部	宮尾光恵	重北大学大学院農学研究科
室内 成 篠崎一雄	理化学研究所植物科学研究センター	宣下革明	京都大学大学院地球環谙学党
■ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	九州大学大学院理学研究院	宣 地重遠	海洋バイオテクノロジー研究所
嶋田敬三	方都大学重克	完暑(中島)ぬり	関西学院大学理工学部
白兕羗捕	告記八丁 木示	村田紀夫	其磁生物学研究所
口石我 问 沈 建仁	网山大学大学院自然科学研究科	木 極 健	古都產業大学総合生命科学部
杉浦昌引	名古屋市立大学	構田明種	本良先端科学技術大学院大学
	大学院システム自然科学研究科		バイオサイエンス研究科
杉浦美羽	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	和田一一	市市大学大学院総合文化研究科
杉田 謹	名古屋大学遺伝子宝驗協設	лен Ль	
水山 違夫	名古屋大学		

編集後記

前任者の西山 佳孝さんから引き継ぎ、今号から編集長を務めることになりました。また編集委員には、 前期から引き続き粟井 光一郎さん(静岡大学)、そして新しく成川 礼さん(静岡大学)、矢守 航さ ん(東京大学)に加わって頂きました。二年間、どうぞよろしくお願い申し上げます。私自身、見よ う見まねで光合成研究を始めた学生の頃から、「光合成研究」を楽しみに拝読してきました。これま での関係者の御尽力で非常に充実した誌面となっており、日本語のわかりやすい解説や研究紹介は、 光合成研究者だけではなく、異分野の研究者にとっても非常に価値のあるものだと思います。この雑 誌をさらに素晴らしいものとし、研究分野の発展に貢献にするため、鋭意努力する所存でおります。

さて、今号は、2016年5月27日~28日に東京理科大学葛飾キャンパスで開催された第7回日本光 合成学会・公開シンポジウム「光化学系の構造・モデル計算から見えてきた光合成反応の妙」でご講 演していただいた方々とポスター発表賞を受賞された方々に加え、トピックス記事を神戸大学の嶋川 さんと三宅さんに執筆していただきました。限られた執筆期間だったにも関わらず、ご自身の研究に 対する著者の思い入れが伝わってくる力作ぞろいだったと思います。今号に関するご意見や本誌に対 するご要望がございましたら、ぜひ私までご連絡ください。

また、研究紹介や解説などの記事を随時受け付けておりますので、奮ってご投稿ください。

編集長·伊福 健太郎 (京都大学)

記事募集

日本光合成学会では、会誌に掲載する記事を会員の皆様より募集しています。募集する記事の項目は以下の通りです。

○ トピックス:光合成及び関連分野での纏まりのよいトピックス的な記事。

○ 解説:光合成に関連するテーマでの解説記事。

○ 研究紹介:最近の研究結果の紹介。特に、若手、博士研究員の方からの投稿を期待しています。

O 集会案内:研究会、セミナー等の案内。

O 求人:博士研究員、専門技術員等の募集記事。

O 新刊図書:光合成関係、または会員が執筆・編集した新刊図書の紹介。書評も歓迎します。

記事の掲載を希望される方は、編集長の伊福(ifuku@kais.kyoto-u.ac.jp)までご連絡ください。

光合成研究 27 (1) 2017

「光合成研究」編集委員会

編集委員 粟井 光一郎(静岡大学) 編集委員 成川 礼(静岡大学) 編集委員 矢守 航(東京大学)	編集長	伊福	健太郎	(京都大学)
編集委員成川 礼(静岡大学)編集委員矢守 航(東京大学)	編集委員	粟井	光一郎	(静岡大学)
編集委員 矢守 航(東京大学)	編集委員	成川	礼(静	岡大学)
	編集委員	矢守	航(東京	京大学)

日本光合成学会 2017年度役員

会長	高橋	裕一郎	(岡山大学)
事務局長	園洲	公毅 (]	見稲田大学)

爭務局長	園池 公毅	(早稲田大字)

常任幹事	田中 歩(北海道大学)	前会長
常任幹事	鹿内 利治(京都大学)	前事務局長
常任幹事	松田 祐介(関西学院大学)	年会2015年
常任幹事	柏山 祐一郎(福井工業大学)	年会2016年
常任幹事	杉浦 美羽(愛媛大学)	年会2017年
常任幹事	古本 強(龍谷大学)	年会2017年
常任幹事	鞆 達也(東京理科大学)	光生物学協会
常任幹事	石北 央(東京大学)	
常任幹事	伊福 健太郎(京都大学)	編集長

会計監査藤田 祐一(名古屋大学)ホームページ加藤 裕介(岡山大学)

光合成研究 第 27 巻 第 1 号 (通巻 78 号) 2017 年 4 月 30 日発行

日本光合成学会

〒700-8530 岡山県岡山市北区津島中 3-1-1
 岡山大学 異分野基礎科学研究所
 高橋 裕一郎 研究室内
 TEL:086-251-7861
 FAX:086-251-7876
 e-mail:jspr@photosyn.jp
 ホームページ:http://photosyn.jp/
 郵便振替口座 加入者名:日本光合成学会 口座番号:00140-3-730290
 銀行振込の場合 ゆうちょ銀行、019店 (ゼロイチキュウと入力)、当座、0730290
 名前:ニホンコウゴウセイガッカイ