巨大アンテナ系クロロソームを構成するバクテリオクロロフィル分子: その生合成の解明と今後の展開[#]

1久留米大学医学部医化学講座

2大阪大学大学院理学研究科生物科学専攻

3立命館大学総合理工学院

原田二朗1*、大岡宏造2、民秋 均3

1. はじめに

緑色硫黄細菌は Chlorobia 綱に属し、光合成のみで 生育する絶対嫌気性の光合成細菌である。硫化物など の還元硫黄化合物を電子源とし、硫黄温泉や部分循環 湖の低深水部にある嫌気層などの限られた環境に生息 している。そのような環境には必ずしも十分な太陽光 が届くとは限らず、通常の光合成生物が生育できない ほど微弱光であることも少なくない。しかし緑色硫黄 細菌はクロロソーム¹¹と呼ばれる高効率な光捕集膜外 アンテナ装置をもっているため(図1)、地表に届く太陽 光の0.1%以下の光環境下でも生育可能である。後述す るようにクロロソームの優れた光捕集能力は、他のア ンテナ系とは比べにものにならないほど高密度にクロ

図1 緑色硫黄細菌の光合成器官の模式図 黄色い矢印は、光エネルギーの伝達経路を示す。

* 解説特集「光合成細菌 —研究材料としての魅力—」

* 連絡先 E-mail: jiro_harada@med.kurume-u.ac.jp

ロフィル分子が自己集積化されていることに起因す る。吸収された光エネルギーは、クロロソームの基 底部にあるベースプレートとFMOタンパクを介し て、タイプ1反応中心複合体へと伝達される。もとも と我々の研究の興味は、この一連の光エネルギー伝 達系と、引き続き起こる電子移動反応にあるが、こ こ数年は、光捕集に関わるバクテリオクロロフィル (BChl) 色素の生合成に関する研究も行ってきた。そ の理由は、ある種の緑色硫黄細菌において、クロロ ソーム内の色素が環境によって変化するという興味 深い現象に遭遇したからである。原因を探ると、1つ の色素合成酵素にたどり着いた。その合成酵素の変 異体を作製することで、まだ謎の多いクロロソーム の構造研究に新たな展開の糸口が見え始めている。 本稿は、まず色素の自己会合体からなるクロロソー ムの構造を簡単に紹介し、BChlの生合成系を研究し 始めた経緯と我々の得た知見について解説する。

2. クロロソームの構造と内在するバクテリオク ロロフィル分子の特徴

クロロソームは種々の膜タンパク質を含んだ脂質 一重膜と基底部のベースプレートによって外枠が構 成されている、20~200 nmスケールの楕円形状の小 胞である(図1)。この小胞は、基底部のベースプレー トとFMOタンパクを介して細胞質側の膜表面に結合 しており、その近傍には反応中心複合体が存在す る。内部には約1.4~2.15 x 10⁵分子²⁾の BChl c、d ま

図2 BChl c, d および e の分子構造

これらの色素は、C3¹位のエピマー体と、C8位およびC12位 に異なる側鎖を持ったホモログ体の混合物として生体内に存 在する。自己会合体の形成に必要な側鎖を、丸によって示し た。

たは e が存在している (図2)。これらの色素分子は、 BChl c を基に構造を比較すると、C20位のメチル基が 水素原子であるのが BChl d で、C7位のメチル基がホ ルミル基となっているのが BChl e である。これら側 鎖の違いによって BChl $d \ge e$ のQy帯の吸収極大は、 BChl c と比較して、それぞれ10 nmと15 nmほど短波長 シフトしている (BChl c, 660 nm; BChl d, 650 nm; BChl e,646 nm:これらの値は有機溶媒アセトン中で測定し たモノマー状態の吸収極大を示す)。またBChl c/d/e 分子は、生体内ではC3¹位におけるRとSの立体異性体 (エピマー)とC8位とC12位に異なるアルキル鎖をもつ 同族体(ホモログ体)の混合物として存在している。ク ロロソームの構造において、これらBChl色素の大きな 特徴は、その内部で色素だけの自己会合体を形成して いる点である。これは BChl c/d/e の分子構造自体に由 来しており、C3¹位の反応性の高いヒドロキシ基が、 近傍の2分子のBChlとの間でそれぞれC13位のケト基 と水素結合、中心マグネシウムと配位結合することで (Mg…O-H…O=C) 超分子構造が形成されている (図1, 2)。この形成にはタンパク質が一切関与せず、他の光 合成生物がもつ色素とタンパク質の複合体であるアン テナ系とは本質的に異なっている。この自己会合によ る超分子構造は、これまでロッドモデルで説明される 円柱形状であると考えられてきたが1)、近年になって ラメラータイプ3)やシートロールタイプ4)と新しいモデ

ルが提唱されており、未だ明らかとなっていない。 クロロソームが巨大なアンテナ複合体であるために 構造解析が容易ではなく、分光学的解析および各種 顕微鏡観察等によるデータの蓄積が、構造の解明に 不可欠である。

3. Chlorobaculum parvumで観察された、クロロ ソーム内の色素組成の変化

我々が色素合成系の研究を行うきっかけとなった のは、緑色硫黄細菌 Chlorobaculum (Cba.) parvum (Chlorobium vibrioforme f. sp. thiosulfatophilum より改 名5)の継代培養を続けていると、クロロソームを構 成する色素分子種の比率が変化するという現象に気 づいたからである⁶⁾。クロロソーム内の色素は種に よって異なり、BChl c、d および e のどれか1種類で あるのが一般的である。ところが過去の文献を調べ てみたところ、Cba. parvum NCIB 8327株は、培養条 件によってクロロソーム内の色素組成が変化するこ とが報告されていた⁷⁾。我々はこのNCIB 8327株の色 素組成変化に興味をもち、BChl c のみ、あるいは BChl d のみを持つ亜株を単離した(それぞれC亜株 およびにD亜株とする)⁶。一方、NCIB 8327株と同 一株であるDSM 263株では BChl c と d が同一細胞内 に混在し、それぞれの比率は約94%と6%であった8)

(我々は16S rDNAの解析から、NCIB 8327株とDSM 263株は同一株であることを確認している。DSM 263 株を263亜株とする。)。前項で述べたように、2つ の色素の構造上の違いはC20位のメチル基の有無で ある(図2)。我々は同一株から、異なる色素組成を示 す亜株が発生する原因を探るため、C20位メチル基 転移酵素 (BchU) をコードするbchU遺伝子の塩基配 列を解析した。その結果、D亜株ではbchU遺伝子の1 箇所で1塩基(アデニン)挿入によるフレームシフトが 起こったため、酵素が不活化していることが分かっ た(図3)。これは、Marescaらが同亜株を用いて解析し た変異と一致していた⁹⁾。一方、BChl cを合成するC 亜株と263亜株とでは、BchUのアミノ酸配列のうち3 残基のみ異なっており、このわずかな違いが、異な る色素組成を示す原因と推察された。ここで興味深 いことに、263亜株にはD亜株で確認された変異と同 じ箇所にアデニン塩基が存在していた(図3)10)。しか しその5塩基後のアデニンが欠失しており、結果とし てbchUのフレーム自体に影響はなく、活性をもつ酵

図3 *Cba. parvum*のC亜株、D亜株および263亜株の*bchU*遺伝 子の部分配列と対応するアミノ酸配列の比較。

塩基配列において、D亜株で挿入失活の原因となったアデニ ンを赤で示している。また、263亜株の塩基配列に存在して ないアデニンを青で示している。アミノ酸配列では、C亜株 と異なる配列を白抜きのアミノ酸で示している。

素が発現していることがわかった。これらの結果か ら、我々は以下の仮説を考えている。Cba. parvum NCIB 8327株は、自然界より BChl d をもつ株として単離さ れている⁷⁾。この時点ですでにD亜株で観察された1塩 基(アデニン)の挿入変異が起こっており、bchU遺伝子 は不活化されていたと考えられる。その後様々な機関 に株分けされ継代培養を繰り返すうちに、不活化した bchU遺伝子にさらに変異が導入され、再びタンパクと して翻訳されるようになった。つまり263亜株では挿 入塩基の5つ後のアデニンの欠失、C亜株では挿入した アデニンの欠失が起こったのであろうと考えている。 また、C亜株とD亜株を用いて2つの色素の生理的機能 の違いを調べた結果、BChl c は d よりも菌体の生育に 有利に働き、特にD亜株はわずかな酸素の混入でも著 しく生育阻害を受けることが分った¹¹⁾。また、BChl c をもつ株は BChl d をもつ株よりも微弱光での生育が 速いことも報告されている^{6,9)}。これらの違いが選択圧 として働き、D亜株の不活化bchU遺伝子に復帰突然変 異を生じさせたと思われる。

この解析を行って我々が疑問を抱いているのは、自 然界から BChl d をもつ菌株の単離の報告が頻繁にあ ることである。BChl c は BChl d よりも細菌にとって 有利に働くのは実験室内でのことであり、自然界にお いては BChl d をもつことの優位性があるのではない かと推測している。しかしながら自然界において BChl d をもつ種のすべてが、不活化されたbchU遺伝 子を持っているのかは現在のところ不明である。本 来、野生株として BChl d をもつ種は存在せず、環境に 応じてbchU遺伝子の発現のon/offが突然変異によって 行われているとしたら面白いのだが、現在のところ 想像に過ぎない。

4. C20位メチル基転移酵素BchUの基質認識と反応機構

上記のようにbchU遺伝子の発現は、BChl $c \geq d$ の 合成に大きく関わっている。これらの色素の生合成 経路は緑色硫黄細菌 Cba. tepidum (Chlorobium tepidum より改名5))のゲノム解析と分子生物学的解析から明 らかとなりつつある12)。クロロフィル色素の中で最 初に合成経路が解明されたのは紅色細菌の BChl a で あり、後にその功績は酸素発生型光合成生物のクロ ロフィル (Chl) a 合成経路の決定に大きく貢献した。 BChl c 合成経路の解明はこれらの研究が基盤とな り、関連酵素の殆どが (B)Chl a 合成経路で働く酵素 遺伝子のオーソログもしくはパラログであった。し かしbchU遺伝子は紅色細菌のカロテノイド合成経路 で働くメチル基転移酵素遺伝子crtFと高い相同性を 持っていた⁹⁾。bchU欠損株の色素組成を調べると、 他の部位の修飾基には全く影響を与えず、C20位のメ チル基だけがない BChl d を合成していた。そのため BchUがC20位のメチル基転移酵素であることは明ら かであるが、BchUが BChl c 生合成経路上のどの段階 で働くかについては結論が得られないままであっ た。そこで我々は、精製BchUを用いて人工的に合成 した数種類の色素と反応させ、BchUの基質特異性を 調べることにした。その結果、BchUはS-adenosylmethionine (SAM) をメチル基供与体とし¹³⁾、C3¹位 の側鎖にヒドロキシ基を持つ色素に対して最も高い 反応性を示すことがわかった(原田ら未発表デー タ)。また、C3¹位にヒドロキシ基をもっていれば、 C8²位とC12¹位のアルキル鎖の構造が異なるホモログ 体にも反応することが可能であった。

BchUの基質認識と反応機構について分子レベルで の詳細な情報を得るために、この酵素の結晶構造解 析も行った^{14,15)}。分解能2.27Åの構造解析には成功し たが、残念ながら基質となる色素との複合体を得る ことができなかった。しかしモデル計算に基づき、 SAMからのメチル基転移反応はTyr246が触媒残基と して働く典型的なS_N2反応であることが示唆された。 さらに、基質のC3¹位ヒドロキシ基に対するBchUの 高い特異性には、Asn153とAsp286の関与が予想され た。実際、これらのアミノ酸の部位特異的変異体を作 製したところ酵素活性の著しい低下が見られ、我々の 推測は妥当であった。

5.BChl c/d/e の生合成経路

このようにBchUの基質特異性を明らかにすること ができたので、BChl c/d/e の合成に至る経路について 考えてみたい¹⁶⁾。全てのクロロフィル色素分子は、ヘ ムを含むテトラピロール代謝経路から分岐して合成さ れる。プロトポルフィリンIXからクロロフィリドaま では、ほぼ全てのクロロフィル色素において共通であ ると考えられ、クロロフィリドaに特異的な酵素が働 くことにより各色素分子の合成経路へと分岐してい く。BChl c の合成経路もクロロフィリド a から分岐 し、13²位のメトキシカルボルニル基が脱落すること

図4 緑色硫黄細菌におけるBChl c, d および e の生合成経路

青い点線の丸は、修飾酵素が反応した後の部位を示す。R⁸はエチル基, n-プロピル基またはiso-ブチル基 (BChl eのみネオペンチル基)。R¹²はメチル基またはエチル基。

で、C3位がビニル基である3-ビニルバクテリオクロ ロフィリド *d* (ピロクロロフィリド *a*)が合成される (図4)。この色素のC8²位とC12¹位には、それぞれ BchQとBchRによりメチル基が付加されてホモログ体 が生じる。その後、C3位のビニル基が水の付加に よって1-ヒドロキシルエチル基に変換され、バクテ リオクロロフィリド *d* ホモログが生成する。この反 応ではC3¹位がRとSの立体構造になるエピマーが生 じるが、それぞれBchFとBchVが触媒する。次にこれ らC3¹位にヒドロキシ基をもつ色素に対して、BchU がC20位にメチル基を導入する。BchUはこれらC8²位 とC12¹位のホモログ体、C3¹位のエピマー体の全てを 修飾することが可能である。最後にBchKによって C17位上にファルネシル基が付加され、BChl *c* ホモ ログ・エピマーが産生される。一方、BChl *d* の合成

> 経路に関しては、BChl c の合 成経路からBchUの反応段階が なくなった経路と考えられ る。さらに BChl e において は、BChl c の合成経路上に、 C7位メチル基のホルミル化反 応が加わった経路によって合 成されると考えられる。BchU はC7位ホルミル基を有する色 素に対する反応性が低いこと から、C20位のメチル化よりも 後でホルミル化反応が起こる と推測される。しかし現在の 所、このホルミル化酵素につ いては同定されていない。

6. BchUの変異体解析によ るクロロソーム研究の新た な切り口

このように我々はBchUを中 心にクロロソーム内のBChl合 成に関する研究を行ってき た。最近、この酵素遺伝子の 変異体を解析することによ り、クロロソーム内のBChlの 自己会合体形成に関する研究 を新たな切り口で展開してい くヒントが得られているので

紹介しておきたい。本稿の最初にも述べたが、クロロ ソームの詳細な構造については今でも議論が続いてい る。クロロソームを構成する大部分が色素の自己会合 体であり、近年、色素変異体を用いた比較実験に基づ いて、その構造モデルを検証しようとする研究が行わ れている⁴⁾。そこで我々も Cba. parvum DSM 263株が *bchU*の変異によって同一生体内にBChl c と d の両方の 色素を持っていることに着目した。これらの色素が生 体内でどのように分布しているのかが分かれば、自己 会合体に関する知見が得られるのではないかと考えた のである。このような着想には、過去の同様な研究に おいて2つの異なる見解が導き出されているという背 景がある。宮武らは BChl c と d をそれぞれ生体から 抽出し、in vitroで混合して再構成させたクロロソーム を解析した結果、両方の色素は同一のクロロソーム内 に存在し、混ざりあった自己会合体を形成することを 報告している¹⁰。ところがSteensgaardらは、BChl c と d が1:1で混在する Cba. limnaeum (Chlorobium limicolaよ り改名5) UdG 6040株を用いた解析から、両色素は同 一クロロソーム内に存在するが、それぞれドメインを もっており、互いに独立した会合体を形成すると主張 している¹⁸⁾。前者の結果については in vivo でも反映さ れるかという点に疑問が持たれ、また後者の解析につ いては比較対象が少ないため、2つの色素の生体内で の局在については明確な結論が得られていない。我々 はこれまでの研究の中で、BchUの立体構造から予想 される基質結合部位に変異を加えることにより、メチ ル基転移活性が部分的に低下する変異酵素をいくつか 見出している。このような変異BchUを Cba. tepidum の

図5 Cba. tepidumのbchU変異体から単離したクロロソームの77Kにおける紫外可視吸収スペクトル測定

図6 BChl d 含量の変化に伴うクロロソームのQy帯ピーク 波長の変化

実測値(赤丸-赤実線)とシュミュレーション値(青丸-青実線) を比較した。実測値は図5の測定結果をプロットした。シュ ミュレーションは、図5の0% BChl dと100% BChl dの値を用 いて算出した。

生体内で発現させれば、同一種由来で BChl c/d 組成 が異なる株が得られ、上記の見解のどちらが正しい かを判定することができるのではないかと考えた。 そこで Cba. tepidum のbchU欠損株を作製し、これを 親株として変異bchU遺伝子を導入した数種類の変異 株を得た。単離したクロロソームの色素組成を解析 したところ、 $BChl c \ge d$ の全量に対する BChl dの割 合は、野生株で0%、親株(bchU欠損株)で100%と なるが、得られた変異株は38、52、86と94%であっ た。このような段階的に BChl d の割合が異なるクロ ロソームを単離し、低温紫外可視吸収スペクトルを 測定したところ、クロロソームのQy帯における吸収 極大の波長は、BChl d の割合が多くなるほど短波長 側にシフトしているのが観察された(図5)。またQ_v ピークの波長を BChl d の割合に対してプロットし、 シミュレーションから得られた結果と比較した(図 6)。このシミュレーションは BChl d の割合が 0% と 100%のクロロソームのデータを用いたものであり、 上述のSteensgaardらの見解である「クロロソーム内 でBChl c と d が各々別の会合体を形成」したときを 想定している。実測結果はシミュレーションとは異 なり、BChl d がある程度以上の割合で存在しない限 り、Qvピークの大きな短波長シフトは起こらないこ とが分かった。今回は示していないが、別の解析で もシミュレーションとは異なる結果が示されている ことから、我々は BChl $c \ge d$ は同一クロロソーム内 で、混ぜ合わさった自己会合体を形成しているとい う、宮武らの見解を *in vivo* でも支持する結論に至っ た。しかしながらSteensgaardらの結果を支持しなかっ た理由として、自己会合体の形成方法が種によって異 なっているという可能性は否定できない。

このように我々は変異株を用いて BChl c と d の色 素組成が異なるクロロソームを作製することができる ようになり、自己会合体色素の物理化学的性質を研究 する上で良い材料を提供するものと期待している。ま た BChl c/d の組成比の違いによる励起エネルギー移動 効率を評価することも可能である。これについては、 今後解析予定である。

7.おわりに

クロロソームに存在するBChlの生合成経路に関する 理解が10年前と比べて飛躍的に深まったのは、言うま でもなく近年のゲノムプロジェクトの成果とCba. tepidumで形質転換系が確立したことによる。まだ同定 されていない合成酵素の探索も急がれるが、今後は経 路全体を含めた制御、および他の代謝系との関わりに 研究の興味が移っていくと考えられる。特に合成され た大量の色素がクロロソームに運ばれて組織化する機 構は、巨大アンテナ系のバイオジェネシスとして重要 な研究課題の一つとなるであろう。このことは、未だ 長い論争に決着がついていないBChlの自己会合体を含 めたクロロソームの構造解明にも深く関わってくる問 題である。個々の研究から全体に展開できるのは、光 合成システムが複数の機構からなる大きなネットワー クをもつからであり、これは現在の光合成研究の1つ の流れである。我々の緑色硫黄細菌の研究も個から全 への広がりに目を向け、光合成研究全般に貢献した 61

謝辞

本稿で紹介した我々の研究の遂行は、共同研究者 の日々の絶え間ない努力の上に成り立っている。この 場を借りて感謝を申し上げる:Robert E. Blankenship教 授 (ワシントン大学)、福山恵一教授、和田啓助教 (大 阪大学)、佐賀佳央准教授 (近畿大学)、野口正人教授 (久留米大学)、高橋俊介、大角重明 (立命館大学)、 Aaron M. Collin、Jianzhong Wen (ワシントン大学)各 君。 Received June 30, 2010, Accepted July 15, 2010, Published August 31, 2010

参考文献

- Blankenship, R. E., and Matsuura, K. (2003) Antenna complexes from green photosynthetic bacteria, in *Light-Harvesting Antennas in Photosynthesis* (Green, B. R., and Parson, W. W., Eds.) pp 195-217, Kluwer, Dordrecht, The Netherlands.
- 2. Saga, Y., Shibata, Y., Itoh, S., and Tamiaki, H. (2007) Direct counting of submicrometer-sized photosynthetic apparatus dispersed in medium at cryogenic temperature by confocal laser fluorescence microscopy: estimation of the number of bacteriochlorophyll *c* in single light-harvesting antenna complexes chlorosomes of green photosynthetic bacteria, J. Phys. Chem. B 111, 12605-12609.
- Psencik, J., Ikonen, T. P., Laurinmaki, P., Merckel, M. C., Butcher, S. J., Serimaa, R. E., and Tuma, R. (2004) Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria, *Biophys. J.* 87, 1165-1172.
- Ganapathy, S., Oostergetel, G. T., Wawrzyniak, P. K., Reus, M., Gomez Maqueo Chew, A., Buda, F., Boekema, E. J., Bryant, D. A., Holzwarth, A. R., and de Groot, H. J. (2009) Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes, *Proc. Natl. Acad. Sci. USA* 106, 8525-8530.
- Imhoff, J. F. (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences, *Int. J. Syst. Evol. Microbiol.* 53, 941-951.
- Saga, Y., Oh-oka, H., Hayashi, T., and Tamiaki, H. (2003) Presence of exclusively bacteriochlorophyll-*c* containing substrain in the culture of green sulfur photosynthetic bacterium *Chlorobium vibrioforme* strain NCIB 8327 producing bacteriochlorophyll-*d*, *Anal. Sci. 19*, 1575-1579.
- 7. Broch-Due, M., and Ormerod, J. G. (1978) Isolation of a Bchl *c* mutant from *Chlorobium* with Bchl *d* by cultivation at low light intensity, *FEMS Microbiol*. *Lett.* 3, 305-308.
- Saga, Y., Osumi, S., Higuchi, H., and Tamiaki, H. (2005) Bacteriochlorophyll-*c* homolog composition in green sulfur photosynthetic bacterium *Chlorobium vibrioforme* dependent on the concentration of sodium sulfide in liquid cultures, *Photosynth. Res.* 86, 123-130.
- Maresca, J. A., Gomez Maqueo Chew, A., Ponsati, M. R., Frigaard, N. U., Ormerod, J. G., and Bryant, D. A. (2004) The *bchU* gene of *Chlorobium tepidum* encodes the c-20 methyltransferase in bacteriochlorophyll *c* biosynthesis, *J. Bacteriol.* 186, 2558-2566.
- 10. Harada, J., Saga, Y., Oh-oka, H., and Tamiaki, H. (2005) Natural reverse mutations of the inactivated

bchU gene in Chlorobium vibrioforme NCIB 8327, in Photosynthesis: Fundamental Aspects to Global Perspective (der Est, A., and Bruce, D., Eds.) pp 199-120, Allen Press, Lawrence, KS, USA.

- 11. Harada, J., Saga, Y., Oh-oka, H., and Tamiaki, H. (2005) Different sensitivities to oxygen between two strains of the photosynthetic green sulfur bacterium *Chlorobium vibrioforme* NCIB 8327 with bacteriochlorophyll *c* and *d*, *Photosynth. Res.* 86, 137-143.
- Frigaard, N. U., Chew, A. G., Li, H., Maresca, J. A., and Bryant, D. A. (2003) *Chlorobium tepidum*: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence, *Photosynth. Res.* 78, 93-117.
- Harada, J., Saga, Y., Yaeda, Y., Oh-Oka, H., and Tamiaki, H. (2005) In vitro activity of C-20 methyltransferase, BchU, involved in bacteriochlorophyll c biosynthetic pathway in green sulfur bacteria, FEBS Lett. 579, 1983-1987.
- 14. Harada, J., Wada, K., Yamaguchi, H., Oh-oka, H., Tamiaki, H., and Fukuyama, K. (2005) Crystallization and preliminary X-ray diffraction study of BchU, a methyltransferase from *Chlorobium tepidum* involved in bacteriochlorophyll *c* biosynthesis, *Acta Crystallogr.*

Sect. F Struct. Biol. Cryst. Commun. 61, 712-714.

- 15. Wada, K., Yamaguchi, H., Harada, J., Niimi, K., Osumi, S., Saga, Y., Oh-Oka, H., Tamiaki, H., and Fukuyama, K. (2006) Crystal structures of BchU, a methyltransferase involved in bacteriochlorophyll *c* biosynthesis, and its complex with *S*adenosylhomocysteine: implications for reaction mechanism, *J. Mol. Biol.* 360, 839-849.
- Chew, A. G., and Bryant, D. A. (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity, *Annu. Rev. Microbiol.* 61, 113-129.
- 17. Miyatake, T., Oba, T., and Tamiaki, H. (2001) Pure and scrambled self-aggregates prepared with zinc analogues of bacteriochlorophylls *c* and *d*, *Chembiochem.* 2, 335-342.
- Steensgaard, D. B., van Walree, C. A., Permentier, H., Baneras, L., Borrego, C. M., Garcia-Gil, J., Aartsma, T. J., Amesz, J., and Holzwarth, A. R. (2000) Fast energy transfer between BChl *d* and BChl *c* in chlorosomes of the green sulfur bacterium *Chlorobium limicola*, *Biochim. Biophys. Acta.* 1457, 71-80.

Bacteriochlorophyll Molecules Assembled in a Huge Antenna Complex, Chlorosome, of Green Sulfur Bacteria: Its Biosynthesis and New Frontier

Jiro Harada1*, Hirozo Oh-oka2, and Hitoshi Tamiaki3

¹Department of Medical Biochemistry, Kurume University School of Medicine ²Department of Biological Sciences, Graduate School of Science, Osaka University ³Institute of Science and Engineering, Ritsumeikan University