光合成研究

第 25 巻 第 1 号 (通巻 72 号) 2015 年 4 月 NEWS LETTER Vol. 25 NO. 1 April 2015

THE JAPANESE SOCIETY OF PHOTOSYNTHESIS RESEARCH

が	
高橋 裕一郎(岡山大)	2
第6回日本光合成学会年会・公開シンポジウム開催のお知らせ	
高橋 裕一郎(岡山大)松田 祐介(関西学院大)	3
第7回日本光合成学会ワークショプ開催のお知らせ	
高橋 裕一郎(岡山大)	5
研究紹介 基礎成取、尤化子適産、非尤化子相尤	6
立島 一科 (化さ初九州) 研究紹介 シアノバクテリアの光合成における酸素利用	0
嶋川 銀河(神戸大)	16
研究紹介 PsbA3-D1 タンパク質を発現する光化学系 II 複合体の結晶構造	
鵜飼 奈津美(岡山大)菅 倫寛(岡山大) 杉浦 美羽(愛媛大)	22
岩井 雅子(東大) 池内 昌彦(東大) 沈 建仁(岡山大)	
研究紹介 新奇クロロフィルを持つシアノバクテリアのエネルギー移動機構の解析	
後田 稔行(東京理科大) 秋本 誠志(神戸大) 一井 大輔(東京理科大)	28
太田 尚孝(東京理科大) 鞆 達也(東京理科大)	20
解説特生 「光合成の多様な世界について」	34
序文	35
解説 クロロフィルの光エネルギー捕集にみられる多様性	00
秋本 誠志(神戸大) 鞆 達也(東京理科大)	36
解説 原形質流動によろ成長制御から考える植物の光戦略	00
高永 基樹(早稲田大)	42
解説 自然界の多様性を生かした研究戦略・珪蓮の世界	
東子野 康浩 (兵庫県立大)	48
解説 クロロフィルを制した者が光環境を征した? 光合成生物を「食べる」生き様の舞台裏	
柏山 祐一郎(福井丁業大) 横山 亜紀子(筑波大) 民秋 均(立命館大)	58
報告記事 若毛の今活動報告~第 11 回セミナーの開催~	00
浅古記事 · 石子··································	71
報告記事 「筆 11 回 日本米合成学会芸毛の会セミナー」で経験した事	, ,
	72
スロ 光り (工作時八) - 細生記車 The German-Japanese Binational Seminar 2015 に参加して	72
報告記事 The German-Sapanese Dinational Seminal 2013 に参加して 由沢 あゆみ (啓王士)	74
進八 のゆの (項工八) 進入 のゆの (項工八)	74
果云采P1 分 23 回「九口瓜ビマノ」 2013. 仄心中心と 巴索示の多様性」の開催采P1 集合安内 「International Masting "Distance that a passarab for Sustainability 2015"」の開催安内	75
来云来P1 「International Meeting Fhotosynthesis Research for Sustainability 2015」の用催来P1	70
	70
	70
	/8
针 尹云 '	80
柵朱仮 記 到古芭住	۲۵ ۵۰
記事券集 	81
<u> </u>	

ご挨拶

日本光合成学会会長

高橋 裕一郎 (岡山大学 大学院自然科学研究科)

2015年より2年間、北海道大学の田中歩会長の後任として、日本光合成学会の会長をお引き受けすることになりました。

日本光合成学会は、1979年に発足した日本光合成研究会から 2009年6月1日に発展的に移行し、今 年で36年もの歴史をもつ学会です。光合成研究会が発足した年に私は光合成の研究を卒業研究として 始めましたので、研究者キャリアの始めから大変お世話になってきました。これからは学会の運営に も最善を尽くし、日本の光合成研究の発展や光合成研究者の交流の活性化に貢献したいと考えていま す。

日本光合成研究会から日本光合成学会への過程では、代表および会長を始め、事務局や多くの会員 の献身的な貢献により、年会・シンポジウム、ワークショップおよび会報「光合成研究」の充実が進 められてきました。その他にも、「光合成事典」や「光合成研究法」を刊行し、光合成やその周辺領域 の研究者や学生の育成にも貢献してきました。現在は出版社の事情で絶版となった「光合成事典」を 発展させ、Web 版光合成事典を公開しています。このように日本光合成学会は日本の光合成研究の発 展を牽引する役割を果たしてきたと言えます。

光合成研究はご存じの通り、植物科学にとっては基本となる分野で、その学際性が多くの研究者を 引きつけています。また、応用範囲の広さも大きな特徴で、現代社会が直面する深刻な食糧、エネル ギーおよび環境問題の解決にも重要な役割を果たすことが期待されています。このような状況におい て、日本光合成学会が研究者や社会の期待に応えられる組織であり続けるよう最善を尽くしていきた いと考えています。

今後の活動として特に重視したいと考えていることは、光合成の最先端の研究成果の紹介や多様な 光合成の研究手法の普及、研究者間の情報交換を始めとするコミュニケーションの支援、そして次代 を担う若手研究者の育成です。特に学際性の強い光合成研究では分野の異なる研究の相互理解は重要 であると考えています。また、基礎から応用への光合成研究の有機的なつながりを支援できる組織で ありたいと考えています。さらに、光合成研究の重要性を社会に発信することも重要な責務であると 考えています。当面は、事務局の鹿内さんと常任幹事の方々の助けを借りながら、シンポジウムとワ ークショップを充実させつつ、若手研究者の育成に努めます。しかし、会員の皆様の様々なご提案や ご協力なしでは日本光合成学会を更に発展させることは難しいと思っております。どうぞ宜しくご支 援を賜りますようお願い致します。

2

集会案内

第6回日本光合成学会年会および公開シンポジウム 「若手光合成研究者による光合成研究の新展開」 「光合成炭素代謝研究の新展開-CO2取込から細胞・代謝工学まで」

2015年5月22日(金)~23日(土)

岡山国際交流センター

本年の第6回日本光合成学会年会では、シンポジウム、ポスター発表を行います。 日時:2015年5月22日(金)13:00~23日(土)12:30 場所:岡山国際交流センター(http://www.opief.or.jp/oicenter/) 参加費:一般(会員)2,000円、一般(非会員)3,000円、学生1,000円 懇親会費:一般 3,000円、学生 2,000円

5月22日(金)

◎ シンポジウム1 13:00~15:00

「若手光合成研究者による光合成研究の新展開」

オーガナイザー 高橋 裕一郎 (岡山大学)

光合成は幅広い学問分野の知識や手法を駆使して研究を進める学際的な分野です。長い歴史と実績をもつ日本の 光合成研究が今後も発展していくためには、若手研究者の新しく柔軟な発想と研究に邁進する活力が不可欠です。 本シンポジウム1では、新しい発想と研究アプローチで光合成研究を進めている若手研究者4名に話題提供をし て頂きます。大きく広がっている光合成研究の分野の一部しかカバーできていませんが、光合成研究の新展開を 志す若手研究者から熟年研究者はエネルギーを受け取って、世代を超えた活発な議論を巻き起こせたらと期待し ています。

1. ホモダイマー型光合成反応中心の分子生物学的な構造機能解析 浅井智広(立命館大学)

2. 光化学系 I: 複合体リモデリングからサイクリック電子伝達へ 高橋拓子(埼玉大学)

3. 多様な光環境における光合成タンパク質超複合体のダイナミクス 得津隆太郎(基礎生物学研究所)

4. 油脂生産能の高い微細藻類の育種とゲノム解析 井出曜子(中央大学)

◎ ポスター紹介 15:30~16:00

- ◎ ポスターセッション 16:00~18:30
- ◎ 懇親会 18:45~20:45

5月23日(土)

◎ シンポジウム2 9:10~11:20

「光合成炭素代謝研究の新展開-CO2取込から細胞・代謝工学まで」

オーガナイザー 松田 祐介 (関西学院大学)

二酸化炭素を光合成に獲得するプロセスは水生植物・陸上高等植物を問わず多くの段階を経ていることが最近明 らかになってきています。また、植物にとって最大の光エネルギーシンクである CO₂の効率的獲得機構は、光化 学系とも機能的に連携している重要なプロセスと考えられます。本シンポジウムでは植物が CO₂を獲得し利用する仕組み、およびその仕組みを工学的に応用して食料やエネルギー問題等に応用する取り組みについて、最新の知見を幅広く紹介したいと考えています。

- 1. 植物の CO₂ コンダクタンス制御 Yin Wang (名古屋大学)
- 2. 藻類 C₄代謝の多様な機能 辻敬典(関西学院大学)
- 3. 植物 C4 化の取り組み 宗景ゆり (関西学院大学)
- 4. シアノバクテリア工学、CCMから油脂生産まで 小俣達男(名古屋大学)

◎ 総会·授賞式 11:40~12:30

◎ 閉会 12:30

5月22日(金)にポスター紹介の時間を設けます(パネルサイズ: W=90 cm、H=210 cm)。優秀発表賞を選出し ますので、皆様ふるって研究成果をご発表下さい。

参加登録(締め切り 平成27年5月7日)

光合成学会のホームページ(http://photosyn.jp)で登録してください。
申込締め切り日:5月7日(木)
問い合わせ先:
年会企画委員長:松田祐介(関学大)yusuke@kwansei.ac.jp
年会準備委員長:高橋裕一郎(岡山大)taka@cc.okayama-u.ac.jp

集会案内

第7回日本光合成学会ワークショップ

「ジョリオ型分光光度計で光合成のどんな活性を測定できるか」

2015 年 5 月 23 日 (土) ~24 日 (日) 岡山大学理学部生物学科

本年の第6回日本光合成学会年会の終了後に、引き続き岡山大学へ場所を移して「ジョリオ型分光光度計」の原理 および使用法に関するワークショップを開催します。23日のみの参加も可能です。2006年以来の久しぶりのワー クショップ開催となりますが、奮ってご参加下さい。

ジョリオ型分光光度計は細胞のまま分光測定および蛍光測定が可能な装置です。Dual-PAM が蛍光、P700、カロテ ノイドシフトの測定によく利用されていますが、異なる原理で動作するため、測定によっては Dual-PAM と比べ て優れた性能をもつことがあります。日本ではまだ普及していない装置ですが、欧米の光合成研究者はよく利用 されています。本ワークショップではジョリオ型分光光度計の原理と応用について紹介すると共に、今後の光合 成研究への応用について議論を深めたいと思います。

日時:2015年5月23日(土)15:00 ~24日(土)12:00 場所:岡山大学理学部生物学科(http://www.biol.okayama-u.ac.jp/index.html) 参加費: 1,000円(資料代) 懇親会:希望者は23日の夜に夕食を兼ねて懇親会を行います。

5月23日 (土)

15:00~17:00 レクチャー
ジョリオ型分光光度計の原理 高橋裕一郎(岡山大)
カロテノイドシフトの測定法 高橋拓子(埼玉大)
P700の測定法 小澤真一郎(岡山大)
蛍光測定法 高橋拓子(埼玉大)
17:00~18:00 ワークショップ1
ジョリオ型分光光度計の操作の基本
19:00~21:00 夕食を兼ねた懇親会
5月24日(日)
9:30~12:00 ワークショップ2
ジョリオ型分光光度計で光合成活性を測定してみよう
藻類の細胞および植物の葉のP700とカロテノイドシフトの測定

お問い合わせ・参加ご希望の方は、高橋裕一郎(taka@cc.okayama-u.ac.jp)までメールで申し込み下さい。希望者 が多い場合は先着順としますのであらかじめご了承下さい。

ワークショップ参加者には、岡山大学・津島宿泊所(1泊2600円程度、食事なし)

(http://www.okayama-u.ac.jp/tp/profile/tsushima_c02.html)の紹介を致しますので、ご希望の方はお知らせ下さい。
 メール件名:「第6回光合成学会ワークショップ申込」
 申込締め切り日:5月7日(木)

研究紹介

基礎放散、光化学過程、非光化学消光

(独) 農業・食品産業技術総合研究機構 花き研究所笠島 一郎*

パルス変調クロロフィル蛍光測定法は植物の光化学系 II 周辺のクロロフィル励起エネルギーの流れを 測定する手法である。この手法は比較的容易かつ非破壊的にクロロフィル蛍光パラメーターを測定で きるため広く利用されている。クロロフィル蛍光パラメーターはエネルギーの流れに関するモデルに 基づき数理的に導かれるものであるが、その経緯を理解することは簡単ではない。本報告ではクロロ フィル蛍光パラメーターの内容を理解して頂くと共に、クロロフィル蛍光収率の逆数式に基づくパラ メーター導出の計算過程を体系立てて説明することを試みる。

1. はじめに

私事で恐縮だが、まず私がパルス変調クロロフィル 蛍光測定法を研究する機会を得た経緯を紹介させて いただく。7年前に東京大学分子細胞生物学研究所の 内宮・川合研究室(現・埼玉大学)でポスドクとして 研究させて頂くこととなり、「パム」なぞという耳慣 れない名前の機械を使って研究するのだと教えられ た。私の大学院の専攻はシロイヌナズナの栄養欠乏応 答であったので、光合成分野では有名な通称 PAM (パ ルス変調クロロフィル蛍光測定法)を知らなくても仕 方のない話である。助教の高原健太郎さんに簡単な状 況を教えて頂き先生方のホームページ^{1,2)}やら成書^{3,4} やらを眺めては、これは一体どういった実験方法な のであろうかと首を捻ってみた。

様々な考察の末に得た結論は、クロロフィル蛍光に よって与えられる数値データを従来以上に鮮明に説 明しているように思えた。そして東大理学部で実際の 測定を教えて頂くうちに全体の話が見えてきた。また、 論文掲載に際して先生方や雑誌の査読者の方に貴重 なアドバイスを頂き一つの話としてうまく纏めるこ とが出来たと思う⁵⁾。本雑誌に投稿してみてはどうか と背中を押して頂き、この機会を利用してパルス変調 クロロフィル蛍光測定(以後、「PAM 測定」と略す) における脱励起プロセス、反応速度定数、クロロフィ ル蛍光パラメーターの数的関係性および呼称につい

*連絡先 E-mail: kasajima@affrc.go.jp

て解説をしたいと思う。博学の方には基本的過ぎるか も知れないが、当時の自分のような初心者を想定して いるのでご容赦願いたい。また、私自身はクロロフィ ル蛍光測定の原理を実験した訳ではなく、様々な基礎 的知見を総合した光化学系IIの光化学的環境を前提と して数値比較を行ったものである。私は専ら植物科学 の応用的側面を研究させて頂いており、クロロフィル 蛍光測定のそうした応用的事例もこの文章の最後に 紹介したい。

2. 測定原理

植物の葉に光を照射するとクロロフィルが光を吸 収し励起されるが、その励起エネルギーのごく一部 (2%程度)が赤い蛍光として放出される。植物分野の 研究者の方であれば、この現象を普段目にしているか も知れない。私は以前シロイヌナズナの葉の GFP 蛍光 を測定していたので、赤色光を通すフィルターを透過 するクロロフィル蛍光を FluorImager や蛍光顕微鏡で 観察した。こうした測定を行っていた当時はクロロフ ィル蛍光の強度は常に一定であるものとして扱って おり、GFP 蛍光強度を標準化するためにクロロフィル 蛍光強度を利用しさえもした⁶。しかし、実はクロロ フィル蛍光の強度は一定ではなく、照射光の強さやタ イミング次第で蛍光の収率(照射光の強さに対する蛍 光の強さの割合)が変化するのである。こうした蛍光 収率の変化を決められた条件で測定し理論的に計算 するプロセスこそ PAM 測定である。

PAM 測定について理解する為には、まず測定の原理 を知る必要がある。「パルス変調」とはこの場合にお いて、ごく短時間のパルス光を測定対象である植物の 葉に照射し、その際に増加する分の蛍光強度(蛍光収 率に相当する)を観察する手法のことを指している。 「蛍光収率」とは言っても収率の絶対値ではなく相対 値しか分からない。単純に蛍光の絶対的な強度を測定 すれば良いようにも思うが、パルス変調の優れた点は 植物に一定強度の連続光を照射し既にクロロフィル 蛍光が放出されている状態でも、光を照射しない時と 同じ尺度で光化学系Ⅱから放出されるクロロフィル蛍 光の収率を測定できることにある。典型的な PAM 測 定では測定パルス光 (measuring pulse)、アクチニック 光 (actinic light: 励起光と表記することが多い)、飽和 パルス光 (saturating pulse) という3 種類の光を測定機 器から照射する。「測定パルス光」はパルス変調測定 の為の弱い光であり、測定中は常に照射される。測定 パルス光だけが照射された状態は擬似的な暗黒下で ある。植物の葉は測定前に予め暗黒下に 30 分以上置 き葉緑体を暗順応(dark adaptation)させるのが望まし い。後で出てくる Fv/Fm というパラメーターにより暗 順応の度合いを評価することが出来る。Fv/Fmの値が 大きいほどよく暗順応している。健康な葉を完全に暗 順応させた際の Fv/Fm 値は私の経験上、シロイヌナズ ナで 0.85 程度、イネでは 0.82 程度である。ストレス や老化によりダメージを受けた葉では Fv/Fm が小さ い値となる。「アクチニック光」は連続照射光であり、 葉を光が照射された状態に変化させる。「飽和パルス」 は1秒以下の短い時間に渡り時折照射する非常に強い 光である。これは測定上の目的で照射する。とにかく、 これらの光刺激を与えることで葉のクロロフィル蛍 光収率がドラマチックに変化するのである⁷⁾(図1)。

蛍光収率が変化するのであれば、それらを記述する 記号をあてがう必要がある。蛍光測定は暗黒下から始 める。この時の蛍光収率は Fo である。そこに飽和パ ルス光を照射すると蛍光収率が一過的にかなり大き くなる。この蛍光収率は Fm と呼ばれる。次にアクチ ニック光を点灯する。するとやはり蛍光収率が増加す る。この時の蛍光収率は Fs だが、Fs の値は継時的に 変化する。アクチニック光の強さによっても Fs は変 化するので、同じFs でも測定条件により値は異なる。 アクチニック光を照射している最中に飽和パルス光 を照射すると蛍光収率がさらに上がり、この値をFm' と呼ぶ。ここまでが蛍光収率の基本セットだが、オプ ションでアクチニック光消灯後の蛍光収率を観察す る場合がある。蛍光収率はここではFo"とし、飽和パ ルス照射時はFm"としてはどうだろうか。Fo、Fm、 Fs、Fm'等の基本的な蛍光収率や後で出てくる蛍光パ ラメーターの主要なものの呼称は統一されているも のの⁸⁾、困ったことにマイナーな測定条件での蛍光収 率や頻繁に使わない蛍光パラメーターの呼称は文献 により必ずしも同じではない。とりあえず名前を付け れば理解を次に進めることが出来る訳で、マイナーな 呼称についてここでは私が論文で報告した命名法を 採用すると共に⁵⁾、必要に応じてそれに対応する和名 を提案する。

図1 標準的なパルス変調クロロフィル蛍光測定 東大理学部・寺島研の皆様のご好意により測定した。文献 5 より改変。

3. 光化学系 II の脱励起プロセス

文献を紐解くと Kitajima&Butler が最初に Fv/Fm と いう一番有名なクロロフィル蛍光パラメーターを提 案したらしい⁹⁾。最もこの時はパルス変調ではなくク ロロフィル蛍光強度そのものを解析している。Fv/Fm は植物の葉の健康度合いを可視化できるツールとし て農学分野でも広く利用されている。この数値は 0.2 から 0.85 程度の範囲の値を取り、数値の意味するとこ ろは「光合成の最大収率」である。

Fv/Fm = (Fm - Fo) / Fm

この式の意味を理解する為には光化学系IIの脱励起プロセスについて知る必要がある。光化学系IIに結合したクロロフィル分子が励起されると、幾つかのプロセ

スによって「脱励起」(de-excitation)し基底状態に戻る。脱励起する際にエネルギーを放出する。脱励起プロセスは大きく3つのグループに分けられる。

「基礎放散」(basal dissipation) はクロロフィル分子 単独の反応であり、この反応の反応速度定数は光照射 によって変化しない。正確な言い方をすれば、基礎放 散の値は定義上不変のものとして計算する。基礎放散 にはクロロフィル蛍光、内部変換による熱放散、三重 項クロロフィルへの変換が含まれると考えられる。

「光化学過程」(photochemistry) は光合成電子伝達 系、特に励起された P680 クロロフィル二量体から電 子を受け取るフェオフィチンやプラストキノンのこ とだと考えればよいだろう。光化学系 II 超複合体(PSII supercomplex)にはクロロフィル分子が多数結合して おり、クロロフィル分子間の励起エネルギー移動 (excitation energy transfer) により励起エネルギーは P680 に集められる。ただし、光化学系 II のどの部位に 結合したクロロフィルからどれだけの割合で蛍光が 発せられるのかは判然としない。クロロフィルから Mg²⁺が抜けた化学構造を持つフェオフィチンもクロ ロフィルに似たスペクトルの蛍光を発する性質を持 つようである¹⁰⁾。光化学過程の中心的な役割を果たす 分子を特定する為には、生葉の光化学系 II に含まれる どのクロロフィル(フェオフィチン)が蛍光を発する のか知る必要がある。光化学過程は蛍光を発するクロ ロフィルから他の分子へエネルギーを受け渡す反応 なので、化学的には消光(quenching)の一種である(「消 光」の一般的要件は、分子間相互作用により蛍光が弱 まることである)。この場合は電子伝達系が消光剤 (quencher) である。光化学的な消光反応なので、光 化学過程を光化学消光 (photochemical quenching) と言 うことも可能である。一方で放散 (dissipation) は光化 学過程以外へエネルギーを放出することを意味する ので、光化学過程のことを光化学放散と言うことは出 来ない。クロロフィルに起きる反応全てに対して利用 できる表現は「脱励起」である。なので、「放散」や 「消光」は「脱励起」の特殊な部分集合である。

「非光化学消光」(non-photochemical quenching) は、 光化学過程以外の分子間相互作用により蛍光を弱め る反応である。植物は実際にそうしたプロセスを備え 持っている。非光化学消光は英語の頭文字を取って NPQ と呼ばれることが多い。尚、後述するクロロフィ ル蛍光パラメーターのうち NPQ の大きさを示すもの には NPQ と qN という 2 つがある。前者は非光化学消 光の略称と同一の名称なので、文章中で「NPQ」とい う表記がある場合、それが非光化学消光を意味するの かそれともクロロフィル蛍光パラメーターの NPQ を 意味するのかを文脈から区別しなければならない。

基礎放散の反応速度定数は光照射によらず変化し ないと書いたが、光化学過程と NPQ の反応速度定数 は光照射によって変化する。飽和パルス光が照射され ると一過的に光合成電子伝達系(プラストキノン)が 完全に還元され、それ以上の電子を受け取れないので 光化学過程の反応速度定数が近似的にゼロになると 考えられる。また、アクチニック光が照射されると葉 緑体のルーメンで化学反応が起き NPQ が誘導される ^{11,12)}。暗黒下では NPQ は次第に消失する。また、NPQ には2つ以上の成分があると考えられている。アクチ ニック光照射下では光合成電子伝達系が部分的に還 元され光化学過程の反応速度定数が小さくなる。こう した光化学過程と NPQ の反応速度定数の大きさの変 化によってクロロフィル蛍光収率が光環境により変 化するのである。そこで、蛍光収率の値と反応速度定 数の値の関係性を数理モデル化し比較すれば脱励起 プロセスの大きさやその変化を知ることが出来る訳 だ。

4. Stern-Volmer(シュテルン-フォルマー)の 式

蛍光強度(あるいは蛍光収率)と脱励起プロセスの 大きさを関連付けるのが Stern-Volmer の式である:

$I_0/I = 1 + K \cdot [Q]$

 I_0 がもとの蛍光強度(fluorescence intensity)、Iが消光 剤を加えた時の蛍光強度、Kは定数で[Q]は消光剤の濃 度である。この式から、消光プロセスの大きさによっ て蛍光強度がどのように変化するのか知ることが出 来る。Stern-Volmerの式は脱励起プロセスの反応速度 定数(rate constant)と蛍光強度との間の以下のような 式を仮定すると説明できる:

$I_0 = k_{\rm f} / (k_{\rm f} + k_{\rm nr})$

$$I = k_{\rm f} / (k_{\rm f} + k_{\rm nr} + k_{\rm q})$$

ここで k_f は蛍光の反応速度定数、 k_{nr} はそれ以外の基礎 放散の反応速度定数、 k_q は消光の反応速度定数である。 こうした考え方を PAM 測定に適用すると以下の式を 置くことが出来る:

 $F = S \cdot k_f / (k_{fid} + k_p + k_{NPQ})$ (蛍光収率の標準式) この式の F は蛍光収率 (fluorescence yield)、S は感度 ファクター (sensitivity factor) と呼ばれる定数、 k_f は 蛍光の反応速度定数、 k_{fid} は蛍光を含む基礎放散の反応 速度定数、 k_p は光化学過程の反応速度定数、 k_{NPQ} は NPQ の反応速度定数である。この式では脱励起反応の3つ のグループを分かり易くしまた手計算を行い易くす るために k_f とそれ以外の基礎放散の和を一つの k_{fid} と いう記号で表記している。さらに、この式は光化学系 II の光化学的環境に関する「Lake model」の下でのみ 成立することに留意せねばならない。光合成ユニット

(photosynthetic unit、 PSU) という概念がある。これ は、光化学系 II 反応中心複合体とそれに連なるアンテ ナ複合体を1 つのユニットとして考えるものである。 各ユニットがチラコイド膜上で独立に存在するのか、 それともユニット同士が連結し励起エネルギーがユ ニット間を移動出来るのかによって蛍光収率に関す る式も変化する。ユニット同士が連結していればアク チニック光が照射され反応中心が閉じた時も、別のユ ニットの開いた反応中心に励起エネルギーが移動し 光化学過程を励起出来るので光化学反応の効率が良 い。各ユニットが完全に独立した状態を仮定するのが Puddle model (水たまりモデル)、ユニット同士が全て 連結した状態を仮定するのが Lake model (湖モデル) である。光化学系Ⅱ超複合体は2つのユニットが連結 した状態なので Puddle model は現実に合致しないとい う議論がある。実際の測定では Lake model により光合 成ユニットの状態を近似できるが、Lake model と Puddle model の中間的な状態がより正確らしい¹³⁾。 Lake model で近似すると蛍光収率の式が単純で計算し やすいので実用に向いている。

普通の消光反応と異なるのは、植物の葉のクロロフ ィル蛍光の場合は消光過程が二つ(光化学過程および NPQ)存在することである。さらに、これら消光過程 の反応速度定数は消光剤濃度ではなく光照射等の環 境条件により変化する。植物のクロロフィル蛍光は世 の中で最も複雑な消光過程を伴っているのではない だろうか。しかもそれが生物の組織の中で繰り広げら れるのだから驚きである。S は測定上求めることが難 しい値であるが、基本的に変化しない筈なので定数と して扱う。ただし、S の値が変動する可能性(S fluctuation) も場合によってはあるかも知れない。 $k_{\rm f}$ と $k_{\rm fid}$ も定数として扱う。

FoとFmは蛍光収率の標準式により以下のように記述できる:

$$Fo = S \cdot k_{\rm f} / (k_{\rm fid} + k_{\rm pi})$$

 $Fm = S \cdot k_{\rm f} / k_{\rm fid}$

*k*_{pi}は完全に酸化され「開いた」状態の光化学過程の反応速度定数である。飽和パルス光を照射すると光化学 過程が一過的に完全に閉じるので、*k*_pがゼロになる。 この二つの式を使って *Fv/Fm* を計算してみる:

Fv/Fm = (Fm - Fo) / Fm

= $[S \cdot k_{\rm f} \cdot (1 / k_{\rm fid} - 1 / (k_{\rm fid} + k_{\rm pi}))] / [S \cdot k_{\rm f} \cdot (1 / k_{\rm fid})]$

 $= (1 / k_{\rm fid} - 1 / (k_{\rm fid} + k_{\rm pi})) / (1 / k_{\rm fid})$

 $= k_{\rm pi} / (k_{\rm fid} + k_{\rm pi})$

蛍光収率の比率を計算することにより式の不要な部分が消去され、基礎放散と光化学過程の大きさを比較することが出来た。一番最後の式の分母は暗黒下の葉の脱励起プロセス全体の大きさ、分子はそのうちの光化学過程の大きさであるので、式全体は暗黒下における光化学過程の量子収率を示している。光化学過程の量子収率は暗黒下で最大となるので、Fv/Fmは「光合成の最大収率」である。

蛍光収率の標準式を変形するとこの手の計算を簡 単に行うことが出来る。標準式の左辺と右辺の分母を 交換してみる:

 $k_{fid} + k_p + k_{NPQ} = S \cdot k_f \cdot F^{-1}$ (蛍光収率の逆数式) この式では、左辺が反応速度定数の和、右辺が実験に より求まる数値 F^{-1} (に未知の係数 $S \cdot k_f$ を掛けた値) である。脱励起プロセス全体の大きさの和は蛍光収率 の逆数に比例することになる。各蛍光収率について蛍 光収率の逆数式を書き下してみる:

 $k_{\text{fid}} + k_{\text{pi}} = S \cdot k_{\text{f}} \cdot Fo^{-1}$ $k_{\text{fid}} = S \cdot k_{\text{f}} \cdot Fm^{-1}$ $k_{\text{fid}} + k_{\text{p}} + k_{\text{NPQ}} = S \cdot k_{\text{f}} \cdot Fs^{-1}$ $k_{\text{fid}} + k_{\text{NPQ}} = S \cdot k_{\text{f}} \cdot Fm^{-1}$

蛍光収率の逆数式は図示できる(図2)。

5. クロロフィル蛍光パラメーター

既出の Fv/Fm はクロロフィル蛍光パラメーターの 代表格である。クロロフィル蛍光パラメーターは反応 速度定数の比率を蛍光収率の値を基に評価する式の ことであり、多種多様なものが提唱・利用されてきた。

さらに分かりにくいことに、全く同じパラメーターで も文献によって表記が異なる場合がある。また、例え ば同じ光化学過程の大きさを評価するにも様々な方 法があるから、似通った多くの式が存在する。パルス 変調クロロフィル蛍光測定の一つの真実が図2に凝縮 されている。図2の各ボックスの高さは反応速度定数 の大きさを示している。暗黒下では*k*_{fid} と*k*_{pi}が存在し、 *k*_{pi}は *k*_{fid} よりも大きい。尚、*k*_{si}は暗黒下における反応 速度定数の和である:

 $k_{\rm si} = k_{\rm fid} + k_{\rm pi}$

反応速度定数は蛍光収率の逆数を使って示すことも できる訳で、これがボックス横に書かれた式の値であ る。たとえば一番左上に示された数値は以下の式に対 応する:

 $S \cdot k_{f} \cdot Fo^{-1} = k_{si} = k_{fid} + k_{pi}$ FoとFmの値から今一度光合成の最大収率を求めてみ よう。図2を利用して計算すると、

(光合成の最大収率) = $k_{pi} / k_{si} = k_{pi} / (k_{fid} + k_{pi}) = (Fo^{-1} - Fm^{-1}) / Fo^{-1} = (Fm - Fo) / Fm$

光合成の最大収率が何故 Fv/Fm により求まるのか、こ うして見れば一目瞭然ではなかろうか。図2に示され た他の蛍光パラメーターも同様の計算により求める ことが出来る:

NPQ = $k_{\text{NPQ}} / k_{\text{fid}} = (Fm^{,-1} - Fm^{-1}) / Fm^{-1} = Fm/Fm^{,-1}$ (基礎放散を1とした時の NPQ の大きさ)

 $qL = k_p / k_{pi} = (Fs^{-1} - Fm'^{-1}) / (Fo^{-1} - Fm^{-1})$ (光化学過程の)開度)

 $\Phi_{\Pi} = k_p / k_s = (Fs^{-1} - Fm^{,-1}) / Fs^{-1} = (Fm^{,-1} - Fs) / Fm^{,-1}$ (光照射下の光合成収率)

 $\Phi_{NPQ} = k_{NPQ} / k_s = (Fm^{,-1} - Fm^{-1}) / Fs^{-1}$ (NPQ 収率) $\Phi_{NO} = k_{fid} / k_s = Fm^{-1} / Fs^{-1} = Fs/Fm$ (光照射下の基礎放 散収率)

図 2 の大きな矢印 (qL および NPQ) は反応速度定数 の比率を示している。また、小さな矢印 (Fv/Fm、 Φ II、 Φ_{NPO} 、 Φ_{NO}) は各脱励起プロセスの量子収率を **図 2 反応速度定数、蛍光収率、** クロロフィル蛍光パラメータ 一の図示 文献 5 より改変。

示している。図には示していないが、暗黒下の Φ_{NO} を 計算することも出来る。暗黒下の Φ_{II} は Fv/Fm である。 これまでの測定例に基づくと植物の葉では暗黒下よ りも光照射下で反応速度定数の和が若干小さいこと が多いので、 Φ_{NO} は光照射下では若干大きくなる。さ らに、NPQ が大きく低下した *psbS* 変異株では光照射 下での反応速度定数の和が大幅に減少し Φ_{NO} がかな り大きくなる¹⁴⁾。このように、NPQ は光照射により低 下した光化学過程の脱励起能力を補う役割を果たし ている。

ここでは解説しないが、NPQ は緩和解析 (relaxation analysis) により近似的に「速い」NPQ (fast/rapid NPQ) と「遅い」NPQ (slow NPQ) に分けることが出来る¹⁵⁾。 PsbS タンパク質やキサントフィル・サイクルが関与す るのは速い NPQ であり、qE クエンチングとも呼ばれ る^{16,17)}。光阻害による反応速度定数の変化も蛍光収率 の逆数を利用して図解可能である⁵⁾。蛍光収率の逆数 式を利用すると比較的容易にクロロフィル蛍光パラ メーターを計算できるが、逆数式を利用しない計算方 法も様々に工夫されてきた。これらの計算は互いに整 合性があり計算方法の違いを比べると面白いし、Lake model ではなく Puddle model に基づいた計算体系も報 告されている^{18-24,5)}。Puddle model 条件下の光化学過程 の開度は qP というパラメーターで表される。

駒場で行われた第1回日本光合成学会公開シンポ ジウムでクロロフィル蛍光解析の発表をさせて頂い た際に、上記の一連の計算を実験的に証明出来るかと ご質問を頂いた。冒頭にも書いたが、そうした検証は 行っていない。例えば NPQ という生理現象はクロロ フィル蛍光解析法が存在するからこそ測定できるよ うに思えるが、これら脱励起反応の反応速度定数とク ロロフィル蛍光収率の関係を別の手法でより直接的 に検証できたらどんなに素晴らしいだろう。ところで、 仮に'Lake model'が正しかったとしても、上記の一連の 計算式に欠点が無い訳でもない。まず、感度ファクタ -S は本当に変化しないだろうか。強光に晒された植物の葉では葉緑体運動が起き葉の色が薄くなる^{25,26)}。 色が薄くなるとは、葉に照射された光のうち拡散反射

(diffuse reflection) で反射される光の割合が増えると いうことである。反射率が増えるならば葉(クロロフ ィル)の光の吸収率は減少する。光吸収率はSの要素 であるから、葉緑体運動により葉の色が大きく変わる と定数であるべき Sの値が変化することになってしま う。別の問題として、NPQ というパラメーターは基礎 放散の反応速度定数を単位として NPQ の大きさを測 っている。葉の生育状態により遅い NPQ が緩和せず 「基礎放散」として測定される反応速度定数の大きさ が実際よりも嵩増しされてしまったら、Sとは別の部 分で計測値が変化してしまう。これらの異常な状態で は PAM 測定が誤った結論を導く恐れがあるので、実 際にそうした問題が生じ得るのか検証する必要があ る。葉緑体運動の問題は 1992 年には既に報告されて いる。カタバミの葉等で葉緑体運動によると思われる 明確な光吸収率の減少が観察され、クロロフィル蛍光 を測定する際に葉緑体運動の影響を考慮する必要が あると指摘されていた²⁷⁾。さらに最近になって興味深 い報告があったと教えて頂いた²⁸⁾。この論文では葉緑 体運動を欠損したシロイヌナズナの phot2 変異株を使 いNPQを測定している。葉緑体運動の有無によりNPQ の値が異なり、この違いは測定する葉の光透過率と相 関があると報告されている。この論文のデータは以前 から予測されていた葉緑体運動に起因する見かけ上 の NPQ の増大という現象を明確に実証している。葉 の光吸収率が葉緑体運動により変化するような植物 材料や実験条件では葉緑体運動の影響を計算したり 葉緑体運動を回避する測定方法を考案し利用したり する必要がありそうだ。phot2 でも遅い NPQ が観察さ れているので、遅い NPQ の正体は葉緑体運動ではな W.

6. PAM 測定を利用した農学研究

PAM 測定を利用した農学研究の取り組みも行われ ている。Fv/Fm等の測定はストレスを受けた葉に見か け上の変化が現れるよりも早い段階で脱励起プロセ スの異常を非破壊的に見つけることが出来る。この特 性を利用して病原菌の感染やストレス耐性を二次元 PAM 等によりいち早くかつ簡便に検出する手法が提 案されている²⁹⁻³¹⁾。興味深いことに、Fv/Fmの値はマ グネシウム欠乏条件で栽培したオオムギでは減少せ ず、銅欠乏、硫黄欠乏、鉄欠乏条件で栽培したオオム ギでもあまり減少しないのに対してマンガン欠乏条 件で栽培したオオムギでは劇的に減少する³²⁾。より直 接的に Φ_{Π} (あるいはETR)やNPOの測定により光合 成や NPQ の大きさを比較する実験も行われている ³³⁻³⁵⁾。私の経験では生育速度が速いイネ品種ほどФ₁₁ の値が大きくなる傾向があった。しかし、 Φ_{II} の値は 誤差範囲が大きく遺伝型による違いをもとに光合成 速度云々を論じるのは実際には難しいと感じた。例え ば遺伝子をマッピングするためには掛け合わせ後代 の数十から数百個体の光合成速度を誤差なく測定せ ねばならず、光合成速度でこれをやるのは至難の業で ある。個人的には、単純に乾物重ベースの生長解析を 行った方が成果が出やすいと思っている。一方で、 2013 年に多収インディカ品種のタカナリから葉面積 あたりの光合成速度を上昇させる GPS (=NAL1) 遺伝 子が同定された。このマッピングでは光合成測定によ り多数のF₂個体の光合成速度の大小を直接判別し、ま た 10,000 個体以上の F₂植物の遺伝型を調査しており 驚異的な規模の実験である³⁶⁾。

ところで、十分に暗順応した葉を用いると NPQ 値 の誤差範囲はある程度小さく抑えられた。幸運にもイ ネのインディカ品種とジャポニカ品種で NPQ 値に明 確な違いが見られ、ジャポニカ品種一般で大きかった (図 3)。NPQ の大きさを制御する遺伝子座も同定し た³⁷⁾。ジャポニカ品種では上流に挿入されたトランス ポゾンにより *PsbS* 遺伝子の発現が高まった結果速い NPQ が大きくなっているようだ³⁸⁾。それではこの現象 は農学的にどのような意味を持っているのだろうか。

図 3 イネの葉の NPQ 測定例

内宮・川合研の皆様のご好意により測定した。ガラス 温室で栽培したカサラス(左:インディカ品種)とニ ッポンバレ(右:ジャポニカ品種)の葉を暗順応後に 強光条件下(PPFD=1,500 μmol m⁻² s⁻¹)、二次元 PAM 測定装置で測定。 NPQ は強光ストレスへの防御機構の一つなので、イネ が栽培される緯度の違いによる日照の強弱と NPQ の 大きさに正の相関があって然るべきように思う。実際、 強光による光阻害に対して若干ではあるがインディ カ品種よりジャポニカ品種の方が強い傾向もある⁵⁾。 しかし、アジア全体では NPO の小さいインディカ品 種はジャポニカ品種よりも低緯度の高日照地域で栽 培される傾向があるのでこの仮説に反する。代替的な 仮説として考えられるのは、低温環境下で光化学系 Ⅱ がダメージを受けやすくより大きな NPQ が必要とさ れる、といった事であろうか³⁹⁾。NPQの大きさが通常 より大きくなった組み換えイネは存在するが、実験は 基本的に屋外(PPFD = 2,000 µmol m⁻² s⁻¹)よりも光強 度が低い閉鎖系温室内(PPFD = 300~800 µmol m⁻² s⁻¹) に限られているし、組み換えイネを栽培できる低温環 境を準備することすらそう簡単な話ではない。しかし 少なくとも、PsbS 遺伝子の欠損により速い NPQ を欠 くイネの生育は野生型株よりも悪い^{14,37,40)}。2013年の 解説特集「光阻害」によれば、そもそも NPQ の機能 を単純に光阻害の緩和のみに帰するべきではない⁴¹⁾。 将来、イネの NPO が持つ農学的意義が明らかになる ことが期待される。

7. おわりに

クロロフィル蛍光解析は植物の光合成の状態を簡 便に測定できる優れた手法である。基礎研究に止まら ず、この手法をうまく利用して光合成能力の高い作物 が育種される日もそう遠くないのではないだろうか。 本報告がその一助になれば幸いである。私自身は現在 光合成研究から一線を画し花卉の遺伝子組換えを行 っているが、いずれまた微力ながら光合成分野の研究 にも貢献したいと思っている。最後に、一連の研究に アドバイスを頂いた方々やサポートして頂いた方々、 論文の査読者の方々に感謝申し上げたい。

Received December 12, 2014; Accepted January 9, 2015

参考文献

- 1. 光合成の森 http://www.photosynthesis.jp/
- 2. クロロフィル蛍光

http://hostgk3.biology.tohoku.ac.jp/hikosaka/fluores cence.html

- 3. 光合成(佐藤公行 編) 朝倉書店 ISBN978-4-254-17657-5
- 4. 杉森彰:光化学裳華房 ISBN978-4-7853-3208-2
- Kasajima, I., Takahara, K., Kawai-Yamada, M., Uchimiya, H. (2009) Estimation of the relative sizes of rate constants for chlorophyll de-excitation processes through comparison of inverse fluorescence intensities. *Plant Cell Physiol.* 50, 1600–1616.
- Kasajima, I., Ohkama-Ohtsu, N., Ide, Y., Hayashi, H., Yoneyama, T., Suzuki, Y., Naito, S., Fujiwara, T. (2007) The *BIG* gene is involved in regulation of sulfur deficiency-responsive genes in *Arabidopsis thaliana*. *Physiol. Plant.* 129, 351–363.
- Baker, N.R. (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. *Annu. Rev. Plant Biol.* 59, 89–113.
- van Kooten, O., Snel, J.F.H. (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. *Photosynth. Res.* 25, 147-150.
- Kitajima, M., Butler, W.L. (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. *Biochim. Biophys. Acta* 376, 105–115.
- French, C.S., Smith, J.H.C., Virgin, H.I., Airth, R.L. (1956) Fluorescence-spectrum curves of chlorophylls, pheophytins, phycoerythrins, phycocyanins and hypericin. *Plant Physiol.* 31, 369– 374.
- Niyogi, K.K., Li, X.P., Rosenberg, V., Jung, H.S. (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? *J. Exp. Bot.* 56, 375– 382.
- Zaks, J., Amarnath, K., Kramer, D.M., Niyogi, K.K., Fleming, G.R. (2012) A kinetic model of rapidly reversible nonphotochemical quenching. *Proc. Natl. Acad. Sci. USA.* 109, 15757–15762.
- Kramer, D.M., Johnson, G., Kiirats, O., Edwards, G.E. (2004) New fluorescence parameters for the determination of Q_A redox state and excitation energy fluxes. *Photosynth. Res.* 79, 209–218.

- Ishida, S., Morita K., Kishine, M., Takabayashi, A., Murakami, R., Takeda, S., Shimamoto, K., Sato, F., Endo, T. (2011) Allocation of absorbed light energy in PSII to thermal dissipations in the presence or absence of PsbS subunits of rice. *Plant Cell Physiol.* 52, 1822–1831.
- Quick, W.P., Stitt, M. (1989) An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. *Biochim. Biophys. Acta* 977, 287–296.
- Li, X.P., Björkman, O., Shih, C., Grossman, A.R., Rosenquist, M., Jansson, S., Niyogi, K.K. (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. *Nature* 403, 391– 395.
- Niyogi, K.K., Grossman A.R., Björkman, O. (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. *Plant Cell* 10, 1121–1134.
- Baker, N.R. (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. *Annu. Rev. Plant Biol.* 59, 89–113.
- Kramer, D.M., Johnson, G., Kiirats, O., Edwards, G.E. (2004) New fluorescence parameters for the determination of Q_A redox state and excitation energy fluxes. *Photosynth. Res.* 79, 209–218.
- Hendrickson, L., Furbank, R.T., Chow, W.S. (2004) A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. *Photosynth. Res.* 82, 73–81.
- Laisk, A., Oja, V., Rasulov, B., Eichelmann, H., Sumberg, A. (1997) Quantum yields and rate constants of photochemical and nonphotochemical excitation quenching. *Plant Physiol.* 115, 803–815.
- Oxborough, K., Baker, N.R. (1997) Resolving chlorophyll *a* fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of *qP* and *Fv'/Fm'* without measuring *Fo'*. *Photosynth. Res.* 54, 135–142.
- Miyake, C., Amako, K., Shiraishi, N., Sugimoto, T. (2009) Acclimation of tobacco leaves to high light

intensity drives the plastoquinone oxidation system (POS)-relationship among the fraction of open PSII centers (qL), non-photochemical quenching (NPQ) of Chl fluorescence and the maximum quantum yield of PSII in the dark (*Fv/Fm*). *Plant Cell Physiol.* 50, 730–743.

- Sonoike, K. (1999) The different roles of chilling temperatures in the photoinhibition of photosystem I and photosystem II. J. Photochem. Photobiol. B-Biol. 48, 136–141.
- Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguro, S., Kato, T., Tabata, S., Okada, K., Wada, M. (2001) *Arabidopsis* NPL1: A phototropin homolog controlling the chloroplast high-light avoidance response. *Science* 291, 2138–2141.
- Oikawa, K., Kasahara, M., Kiyosue, T., Kagawa, T., Suetsugu, N., Takahashi, F., Kanegae, T., Niwa, Y., Kadota, A., Wada, M. (2003) CHLOROPLAST UNUSUAL POSITIONING1 is essential for proper chloroplast positioning. *Plant Cell* 15, 2805–2815.
- Brugnoli, E., Björkman, O. (1992) Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. *Photosynth. Res.* 32, 23–35.
- Cazzaniga, S., Dall'Osto, L., Kong, S.G., Wada, M., Bassi, R. (2013) Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. *Plant J.* 76, 568–579.
- Mishra, A., Heyer, A.G., Mishra, K.B. (2014) Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated *Arabidopsis thaliana* accessions. *Plant Methods* 10, 38.
- Rousseau, C., Belin, E., Bove, E., Rousseau, D., Fabre, F., Berruyer, R., Guillaumès, J., Manceau, C., Jacques, M.A., Boureau, T. (2013) High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. *Plant Methods* 9, 17.
- Thalhammer, A., Hincha, D.K., Zuther, E. (2014) Measuring freezing tolerance: electrolyte leakage

and chlorophyll fluorescence assays. *Methods Mol. Biol.* 1166, 15–24.

- 32. Schmidt, S.B., Pedas, P., Laursen, K.H., Schjoerring, J.K., Husted, S. (2013) Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll *a* fluorescence measurements. *Plant Soil* 372, 417–429.
- Ishida, S., Uebayashi, N., Tazoe, Y., Ikeuchi, M., Homma, K., Sato, F., Endo, T. (2014) Diurnal and developmental changes in energy allocation of absorbed light as PSII in field-grown rice. *Plant Cell Physiol.* 55, 171–182.
- Wu, X., Bao, W. (2011) Leaf growth, gas exchange and chlorophyll fluorescence parameters in response to different water deficits in wheat cultivars. *Plant Prod. Sci.* 14, 254–259.
- Takahara, K., Kasajima, I., Takahashi, H., Hashida, S., Itami, T., Onodera, H., Toki, S., Yanagisawa, S., Kawai-Yamada, M., Uchimiya, H. (2010) Metabolome and photochemical analysis of rice plants overexpressing Arabidopsis NAD kinase gene. *Plant Physiol.* 152, 1863–1873.
- Takai, T., Adachi, S., Taguchi-Shiobara, F., Sanoh-Arai, Y., Iwasawa, N., Yoshinaga, S., Hirose,

S., Taniguchi, Y., Yamanouchi, U., Wu, J., Matsumoto, T., Sugimoto, K., Kondo, K., Ikka, T., Ando, T., Kono, I., Ito, S., Shomura, A., Ookawa, T., Hirasawa, T., Yano, M., Kondo, M., Yamamoto, T. (2013) A natural variant of *NAL1*, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. *Sci. Rep.* 3, 2149.

- Kasajima, I., Ebana, K., Yamamoto, T., Takahara, K., Yano, M., Kawai-Yamada, M., Uchimiya, H. (2011) Molecular distinction in genetic regulation of nonphotochemical quenching in rice. *Proc. Natl. Acad. Sci. USA.* 108, 13835–13840.
- Nuruzzaman, M., Kanno, T., Amada, R., Habu, Y., Kasajima, I., Ishikawa, T., Kawai-Yamada, M., Uchimiya, H. (2014) Does the upstream region possessing MULE-like sequence in rice upregulate *PsbS1* gene expression? *PLOS ONE* 9, e102742.
- 39. 笠島一郎 (2012) イネにおける光防御の遺伝学 的制御機構, 化学と生物 12, 702-704.
- Ikeuchi, M., Uebayashi, N., Sato, F., Endo, T. (2014) Physiological functions of PsbS-dependent and PsbS-independent NPQ under naturally fluctuating light conditions. *Plant Cell Physiol.* 55, 1286–1295.
- 41. 西山佳孝 (2013) 序文, 光合成研究 23,49

Basal Dissipation, Photochemistry and Non-Photochemical Quenching

Ichiro Kasajima*

NARO Institute of Floricultural Science (NIFS), National Agricultural and Food Research Organization (NARO)

研究紹介

シアノバクテリアの光合成における酸素利用[§]

神戸大学 大学院農学研究科 生命機能科学専攻 嶋川 銀河*

Flavodiiron タンパク (FLV) はシアノバクテリアに広く存在するフラビンタンパクであり、光合成の電子伝達制御に関与している。シアノバクテリア Synechocystis sp. PCC 6803 は4つの FLV を持っており、 FLV1 と FLV3 が PSI における O₂の光還元を触媒する事が知られている一方、FLV2 と FLV4 の詳細な 機能は明らかになっていなかった。本研究では、この FLV2/4 が低 CO₂ 下において誘導され、O₂ 依存 的な代替的電子伝達を駆動させる事で O₂ 傷害を防いでいる事を明らかにした。ここでは私たちの研究 成果を先行研究から得られる知見と織り交ぜて紹介する。

1. はじめに

酸素発生型光合成はその反応の進行に O2 傷害の危 険を伴う。光合成は化学エネルギーを生成する電子伝 達系と化学エネルギーを消費するカルビン回路とい った二つの反応系のバランスから成り立っているが、 例えばカルビン回路の活性が低下して電子伝達が滞 ってしまった場合、電子伝達系に蓄積した過剰電子は 近傍に存在する O2 に渡って活性酸素が生成する。生成 した活性酸素は非常に酸化作用が強く PSII や PSI の光 阻害など様々な酸化傷害を引き起こしてしまう。大気 組成の約 20%が O2である現代と比べて、今から約 30 億年前の大気中の O₂ は極低濃度であったと推定され るが、それでも当時地球上で初めて酸素発生型光合成 を行ったシアノバクテリア (ラン藻) は酸素発生型光 合成が孕む O₂ 傷害の危険に対していくつかの防御策 を講じておく必要があった¹⁾。その一つが、光合成電 子伝達系に過剰蓄積した電子を安全な形で O2 へと流 すことによって活性酸素生成を防ぐ、O2依存的な代替 的電子伝達反応 (Alternative electron flow, AEF) と呼 ばれる機構である。

2. シアノバクテリアにおける O2依存的 AEF

これまでの研究からシアノバクテリアでは O2 依存

*連絡先 E-mail: gshimakawa@stu.kobe-u.ac.jp

的 AEF として 3 つの機構が報告されている²⁾。

1 つめは Flavodiiron タンパク 1/3 ヘテロダイマー (FLV1/3) であり、これは PSI において O₂の4電子還 元を触媒することで光合成誘導期や変動光環境下に おいて電子伝達系の過剰電子の散逸に寄与している と考えられている^{3,4,5)}。

2 つめは呼吸系末端酸化酵素 (Respiratory terminal oxidases、RTOs) でありシトクロムオキシダーゼやキ ノールオキシダーゼが知られている^{6,7)}。これらは呼吸 電子伝達系において O₂の4電子還元に働く酵素であ るが、シアノバクテリアでは同一チラコイド膜上で光 合成系と呼吸系の電子伝達鎖がシトクロム b_of 複合体 とプラストキノンを共有しているため、光合成電子伝 達系に過剰蓄積した電子が呼吸電子伝達系のRTOs へ 流出して O₂ 還元に使われる事により光阻害が緩和さ れると考えられている^{6,7)}。

3 つめに広義の O₂依存的 AEF として光呼吸が挙げ られる。低 CO₂条件においてリブロース 1,5-ビスリン 酸カルボキシラーゼ/オキシゲナーゼ (Rubisco) は O₂ と反応して 2-ホスホグリコール酸を生成する。この化 合物を 3-ホスホグリセリン酸へ代謝する機構が光呼吸 であるが、この過程では電子伝達系で生じる NADPH や ATP といった化学エネルギーが消費されるため、結 果的に過剰電子の散逸に役立つと考えられる。シアノ バクテリアは細胞内に独自の CO₂濃縮機構を備えてい るため⁸⁾、Rubisco 周辺の CO₂濃度が高く維持されてお り、光呼吸を行わないと考えられてきたが、近年の研

[§]第5回日本光合成学会シンポジウム ポスター発表賞受賞 論文

究からは低 CO_2 条件下においてシアノバクテリアが光 呼吸代謝を行い、またそれが O_2 依存的 AEF として機 能することが示唆されている^{9,10)}。

しかしながら、これら報告されている O₂ 依存的 AEF について、生理レベルにおける定量的な活性評価はまだあまり行われていない。

3. 低 CO₂下で誘導される O₂依存的 AEF の発 見

私たちはシアノバクテリアの持つ O2依存的 AEF の 活性を評価するために O2 発生およびクロロフィル蛍 光の同時測定を行った¹¹⁾。高CO2下で生育させたシア ノバクテリア Synechococcus elongatus PCC 7942 (S. 7942) に光を照射し続けると、しばらくして反応溶液 中の CO_2 が使い尽くされ、 O_2 発生と PSII の実効量子 収率を示すY(II)が低下する (図1)。この測定系では酸 素電極の反応容器を開放状態にしてスターラーで溶 液を撹拌しているため、ここでの光合成は CO2の空気 中から反応溶液中への拡散に律速されていると考え られる。また、私たちは一時的(1~3分間)に蓋を閉 めて反応容器を密閉状態にする事でシアノバクテリ ア生細胞の O2発生速度を測定できるが、低 CO2下へ の移行によって S. 7942 の O2発生速度が 10 分の 1 以 下にまで低下している事がわかった (図 1)。この生理 現象は1996年に Miller らによっても報告されており、 S. 7942 では低 CO,下への移行に伴って光合成が抑制 される事で電子伝達系に過剰な電子が蓄積してしま う事を示している¹³⁾。

一方、別の種類のシアノバクテリアである Synechocystis sp. PCC 6803 (S. 6803) では同様の測定系 において S. 7942 とは全く異なる表現型がみられた。 高 CO₂条件で生育させた S. 6803 では低 CO₂下への移 行に伴って O₂発生と Y(II)が急激に低下した後、O₂発 生速度が低いまま Y(II)が徐々に回復した (図 2)。これ は低 CO₂下において S. 6803 で O₂依存的 AEF が駆動 している事、またそれが S. 7942 においては機能して いない事を示している。さらに注目すべきはその電子 伝達活性であり、O₂発生速度が 10 分の 1 以下に低下 しているにもかかわらず Y(II)が CO₂ +分条件と比較 して 80%以上に維持されている事から、ここでの O₂ 依存的 AEF は光合成におよそ匹敵する程の速度で駆 動していると考えられた (図 2)。私たちは S. 6803 にと ってこの O₂ 依存的 AEF が低 CO₂ 下で O₂ 傷害を防ぐ のに必要不可欠な機構であると考え、一昨年末に *Bioscience, Biotechnology, and Biochemistry* に報告した ¹¹⁾。また昨年末にこれと同様の生理現象が NADPH 蛍 光の挙動など新たな知見を含んだ形で Holland らによ って *Biochimica et Biophysica Acta* に報告されている¹⁴⁾。

(Revised Figure from Plant Physiology)

図 1 S. 7942 における低 CO2環境への応答

(A) クロロフィル蛍光 (黒線) および反応溶液中の[O₂]
 (赤線) の経時変化。赤矢印で示した箇所において一時的に反応系を密閉する事で O₂ 発生速度を測定している。
 (B) パルス照射を行った各点における Y(II)。(Shimakawa et al., 2015¹²⁾を改訂)測定装置で測定。

4. S. 6803 における O2依存的 AEF の実体解明

私たちは S. 6803 において見出された O₂ 依存的 AEF の分子メカニズムを解明するために、先行研究で報告 されていた FLV1/3 および光呼吸代謝関連酵素 (ホス ホグリコール酸ホスファターゼ、グリコール酸デヒド ロゲナーゼ、グリシンデカルボキシラーゼ、グリセリ ン酸キナーゼ) について欠損株を作成し、それら変異 体の低 CO₂応答を調べたが、これら全ての変異体で野 生株と同様に O₂依存的 AEF の誘導が確認された^{11,12)}。 また、私たちはこの O₂ 依存的 AEF の O₂ に対する親和 性を調べたが、その K_m が 30~50 μ M であった事から ¹¹⁾、RTOs (O₂に対する K_m が約 0.1~1 μ M⁶) も光呼吸 や FLV1/3 同様にこの O₂依存的 AEF に関与していな いと考えられ、私たちは低 CO₂下で S. 6803 にみられ る AEF の分子的実体がこれまで報告されていない新 規の O₂ 依存的 AEF 経路であると結論づけた。

シアノバクテリア S. 6803 は FLV1/3 と非常に相同性 の高いタンパクとして FLV2 と FLV4 を持っている。 先行研究から FLV2 と FLV4 はヘテロダイマー (FLV2/4) を形成し、PSII において光防御に関与してい ると報告されていたが¹⁵⁾、この FLV2/4 は FLV1/3 と異

図 2 S. 6803 における低 CO₂環境への応答 表記は図 1 と同様。(Shimakawa et al., 2015¹²⁾を改訂)

なり O₂ とは無関係なエネルギー散逸機構とされてき た¹⁵⁾。しかしながら、私たちは、1) *flv2/4* 遺伝子の発 現が低CO₂条件への移行で速やかに促進されること¹⁶⁾、 2) S. 7942 が *flv2/4* 遺伝子を持っていないことに着目し、 *flv2* および *flv4* の欠損株を作成して低 CO₂応答を調べ た。結果、これらの変異株では O₂ 依存的 AEF の誘導 がみられなかった事から (図 3)、S. 6803 において低 CO₂ 下で誘導される O₂ 依存的 AEF の実体が FLV2/4 である事がわかり、私たちはこの結果を昨年末 *Plant Physiology* に報告した¹²⁾。図 4 に、本研究で明らかに した S. 6803 における低 CO₂ 下での O₂ 依存的 AEF の 誘導メカニズムを示す。先行研究において FLV2/4 は PSII に存在すると提唱されているが¹⁵⁾、本研究では電 子伝達系における FLV2/4 への電子伝達部位を同定す る事はできなかった。

5. 今後の展望

本研究で残された最も大きな課題はシアノバクテ リア FLV の詳細な反応機構の解明である。先ほど述べ たようにシアノバクテリア S. 6803 では CO₂十分条件 から低 CO2 下への移行に伴って O2 発生速度が顕著に 低下したにもかかわらず Y(II)は 80%ほど維持されて いた (図 2)。同じ測定系の低 CO2 下において、flv4 欠 損株が O2発生速度と同程度の Y(II)減少を示したこと から、S. 6803 野生株で低 CO2 下に維持されている Y(II) は FLV2/4 によるものだと考えられるため、129×0.8-8 = 約 95 μ mol O₂ (mg Chl)⁻¹ h⁻¹の速度で FLV2/4 によ る O₂の光還元が生じていると見積もられる。一方、私 たちが大腸菌で発現させた GST 融合 FLV4 の精製タン パクは NADH を基質として O₂の4電子還元活性を示 したが、その k_{cat} はおよそ 20 min⁻¹ であった¹²⁾。S. 6803 生体内で FLV2/4 がこの k_{cat} で働く場合、可溶性タンパ クの半分以上が FLV2/4 でなければ成り立たない。こ のような in vivo における O₂の光還元速度と in vitro に おける精製タンパクのNAD(P)H依存的Oっ還元速度と の矛盾は FLV1/3 においても同様にみられる^{3,4)}。FLV はシアノバクテリアの他に嫌気性細菌などで多く見 られ、これらの細菌が持つ FLV は有害な O2の消去に 働いていると考えられているが、その精製タンパクは O₂ 還元反応に 2000~3000 min⁻¹ もの k_{cat} を示す^{17,18})。

(Revised Figure from Plant Physiology)

表記は図1と同様。(Shimakawa et al.、 2015¹²⁾を改訂)

シアノバクテリア FLV の詳細な反応機構については 電子伝達系におけるエレクトロンドナーの同定を初 めとして今後研究を進めていく必要があるだろう。

また、もう一つの課題として S. 7942 など FLV2/4 を 持たないシアノバクテリアにおいて低 CO₂条件で働く O₂ 傷害防御機構を解明する必要がある。図 1 より S. 7942 は低 CO₂ 条件で光合成電子伝達系に過剰な電子 が蓄積し、O₂ 傷害の危険にさらされていると考えられ るが、実際に実験室において S. 7942 は低 CO₂条件で も良好に生育する。そのため S. 7942 では低 CO₂下で FLV2/4 とは異なる O₂傷害の防御機構が働いていると 考えられる。

本研究で得られた結果は、まさしく酸素発生型光合 成のご先祖さまであるシアノバクテリアが、光合成電 子伝達に潜む O₂ 傷害の危険を、O₂を利用する形で克 服する戦略を取っていた事を示している(図 4)。しか しながら面白い事に、高等植物は FLV のアナログを持 っていない¹⁶⁾。なぜ高等植物は FLV を捨てたのか。 また、高等植物において FLV に代わって O₂ 傷害の防 御機構として主要に働いているのは何か。進化的にシ アノバクテリアと高等植物との間に位置すると考え られる緑藻やコケ、シダ植物などの O₂ 傷害防御機構を 解明する事によって、酸素発生型光合成の誕生から今 に至るまでに光合成生物がどのような戦略で O₂ を利 用してきたのかが解明されると期待する。

図 4 S. 6803 における低 CO₂ 下での FLV2/4 の誘導と O₂ 依存的 AEF の発現

高 CO₂ 条件で生育させた S. 6803 において CO₂ が十分量 存在する時は光合成が駆動 しているが (A) 細胞中の CO₂が使い尽くされると光合 成活性が低下し (B) FLV2/4 が誘導され O₂ 依存的 AEF が 駆動する (C)。

謝辞

本研究をまとめるにあたって、ご指導をいただいた 神戸大学大学院農学研究科 三宅親弘 准教授、S. 6803 における O₂依存的 AEF 活性を見出された林良祐さん に深く感謝の意を表す。また、執筆の場を与えてくだ さった日本光合成学会および編集委員の皆さまに対 して心からお礼申し上げる。

Received February 9, 2015; Accepted February 24, 2015

参考文献

- 浅田 浩二 (2009) シアノバクテリアの酸素適応 と活性酸素適応.光合成研究 19,75-80.
- Mullineaux, C.W. (2014) Electron transport and light-harvesting switches in cyanobacteria. *Front. Plant Sci.* 5, 7.
- Helman, Y., Tchernov, D., Reinhold, L., Shibata, M., Ogawa, T., Schwarz, R., Ohad, I. and Kaplan, A. (2003) Genes encoding A-type flavoproteins are essential for photoreduction of O₂ in cyanobacteria. *Curr. Biol.* 13, 230–235.
- Vicente, J.B., Gomes, C.M., Wasserfallen, A. and Teixeira, M. (2002) Module fusion in an A-type flavoprotein from the cyanobacterium *Synechocystis* condenses a multiple-component pathway in a single polypeptide chain. *Biochem. Biophys. Res. Commun.* 294, 82–87.
- Allahverdiyeva, Y., Mustila, H., Ermakova, M., Bersanini, L., Richaud, P., Ajlani, G., Battchikova, N., Cournac, L. and Aro, E.M. (2013) Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. *Proc. Natl. Acad. Sci. USA* 110, 4111–4116.
- Pils, D. and Schmetterer, G. (2001) Characterization of three bioenergetically active respiratory terminal oxidases in the cyanobacterium *Synechocystis* sp. strain PCC 6803. *FEMS Microbiol. Lett.* 203, 217– 222.
- Lea-Smith, D.J., Ross, N., Zori, M., Bendall, D.S., Dennis, J.S., Scott, S.A., Smith, A.G. and Howe, C.J. (2013) Thylakoid terminal oxidases are essential for the cyanobacterium *Synechocystis* sp. PCC 6803 to

survive rapidly changing light intensities. *Plant Physiol.* 162, 484–495.

- Badger, M.R. and Price, G.D. (1992) The CO₂ concentrating mechanism in cyanobacteria and microalgae. *Physiol. Plant.* 84, 606–615.
- Eisenhut, M., Ruth, W., Haimovich, M., Bauwe, H., Kaplan, A. and Hagemann, M. (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. *Proc. Natl. Acad. Sci.* U.S.A. 105, 17199–17204.
- Allahverdiyeva, Y., Ermakova, M., Eisenhut, M., Zhang, P., Richaud, P., Hagemann, M., Cournac, L. and Aro, E.M. (2011) Interplay between flavodiiron proteins and photorespiration in *Synechocystis* sp. PCC 6803. *Plant Physiol.* 286, 24007–24014.
- Hayashi, R., Shimakawa, G., Shaku, K., Shimizu, S., Akimoto, S., Yamamoto, H., Amako, K., Sugimoto, T., Tamoi, M., Makino, A. and Miyake, C. (2014) O₂-dependent large electron flow functioned as an electron sink, replacing the steady-state electron flux in photosynthesis in the cyanobacterium *Synechocystis* sp. PCC 6803, but not in the cyanobacterium *Synechococcus* sp. PCC 7942. *Biosci. Biotechnol. Biochem.* 78, 384–393.
- Shimakawa, G., Shaku, K., Nishi, A., Hayashi, R., Yamamoto, H., Sakamoto, K., Makino, A. and Miyake, C. (2015) FLAVODIIRON2 and FLAVODIIRON4 proteins mediate an O₂-dependent alternative electron flow in *Synechocystis* sp. PCC 6803 under CO₂-limited conditions. *Plant Physiol.* 167, 472–480.
- Miller, A.G., Espie, G.S. and Bruce, D. (1996) Characterization of the non-photochemical quenching of chlorophyll fluorescence that occurs during the active accumulation of inorganic carbon in the cyanobacterium *Synechococcus* PCC 7942. *Photosynth. Res.* 49, 251–262.
- Holland, S.C., Kappell, A.D. and Burnap, R.L. (2015) Redox changes accompanying inorganic carbon limitation in *Synechocystis* sp. PCC 6803. *Biochim. Biophys. Acta Bioenerg.* 1847, 355–363.

- Zhang, P., Eisenhut, M., Brandt, A.M., Carmel, D., Silén, H.M., Vass, I., Allahverdiyeva, Y., Salminen, T.A. and Aro, E.M. (2012) Operon *flv4-flv2* provides cyanobacterial photosystem II with flexibility of electron transfer. *Plant Cell* 24, 1952–1971.
- Zhang, P., Allahverdiyeva, Y., Eisenhut, M. and Aro, E.M. (2009) Flavodiiron proteins in oxygenic photosynthetic organisms: photoprotection of photosystem II by Flv2 and Flv4 in *Synechocystis* sp. PCC 6803. *PLoS One* 4, e5331.
- 17. Rodrigues, R., Vicente, J.B., Félix, R., Oliveira, S.,

Teixeira, M. and Rodrigues-Pousada, C. (2006) *Desulfovibrio gigas* flavodiiron protein affords protection against nitrosative stress *in vivo*. *J. Bacteriol.* 188, 2745–2751.

 Di Matteo, A., Scandurra, F.M., Testa, F., Forte, E., Sarti, P., Brunori, M. and Giuffrè, A. (2008) The O₂-scavenging flavodiiron protein in the human parasite *Giardia intestinalis*. J. Biol. Chem. 283, 4061–4068.

O2-Dependent Alternative Electron Flow in Cyanobacteria

Ginga Shimakawa*

Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University

研究紹介

PsbA3-D1 タンパク質を発現する光化学系 || 複合体の結晶構造[§]

¹岡山大学 大学院院自然科学研究科 光合成研究センター ²愛媛大学 プロテオサイエンスセンター

³東京大学 大学院総合文化研究科

鵜飼 奈津美^{1,*} 菅 倫寬¹ 杉浦 美羽² 岩井 雅子³ 池内 昌彦³ 沈 建仁¹

好熱性シアノバクテリア Thermosynechococcus elongatus (T. elongatus)の Photosystem II (PSII)では D1 サ ブユニットを発現する遺伝子が 3 つ存在し、その発現は生育環境によって調節されている。通常の生 育条件下では psbA1 が発現されるが、強光条件下では主に psbA3 が発現されることが分かっている。 それぞれのタンパク質 PsbA1 と PsbA3 では計 21 個のアミノ酸が異なり、PSII の機能が僅かに異なっ ている。これまで PsbA1-PSII の構造は解明されたが、PsbA3-PSII の構造は未知である。本研究では PsbA3-PSII の構造を明らかにし、立体構造に基づいて PsbA3-PSII の機能を理解することを目的とした。 遺伝子操作により作製された psbA3 のみを発現する細胞から PsbA3-PSII 二量体を単離・精製・結晶化 し、構造解析した。得られた PsbA3-PSII の構造をこれまで報告されている PsbA1-PSII の構造と比較し た結果、Q_Bやフェオフィチンの近傍で構造の差異が確認され、これまで報告された両者の機能的相違 の一部を説明することができた。

1. はじめに

シアノバクテリアから高等植物までの酸素発生型 光合成生物では、太陽の光エネルギーを生物に利用可 能な化学エネルギーに変換すると同時に、水を分解し 分子状酸素を放出している。水分解・酸素発生反応は チラコイド膜上に存在する光化学系 II 複合体 (Photosystem II、PSII)によって触媒されている。PSII のタンパク質組成は生物種によってわずかな違いが あるが、シアノバクテリアでは、17個の膜貫通サブユ ニットと3個の膜表在性サブユニットを含み、単量体 の分子量が 350 kDa にも及んでいる。PSII において、 反応中心クロロフィルである P₆₈₀が光エネルギーによ って励起され、励起された電子はフェオフィチン (Pheo)、プラストキノン Q_A、プラストキノン Q_Bへ渡 されることになる。一方、酸化された P₆₈₀は近傍のチ ロシン残基 Y_Z (D1-Tyr161)を経由して水から電子を引

[§]第5回日本光合成学会シンポジウム ポスター発表賞受賞 論文

*連絡先 E-mail: sc422401@s.okayama-u.ac.jp

き抜き、水をプロトンと分子状酸素に分解するように なる。PSII においてこれらの電子伝達成分を結合して いるのが反応中心タンパク質と呼ばれる D1・D2 タン パク質であり、そのうちの D1 タンパク質は psbA 遺伝 子にコードされている。シアノバクテリアでは psbA 遺伝子は複数種存在しており、好熱性シアノバクテリ ア Thermosynechococcus elongatus (T. elongatus)では psbA1、psbA2、psbA3の3種があり、これらの遺伝子 の発現は生育環境条件によって制御されている。通常 の光条件下では主に psbA1 が発現し他の psbA 遺伝子 はほとんど発現していないが、強光もしくは紫外光条 件下では psbA1 遺伝子の発現が抑制されて psbA3 が主 に発現されることが知られている¹⁻⁴⁾。psbA1 遺伝子と psbA3 遺伝子にコードされる D1 タンパク質同士では 344アミノ酸中21アミノ酸が異なっており、その結果、 それぞれの D1 タンパク質を含む PSII である、 PsbA1-PSII、PsbA3-PSII も異なる性質を持つことが報 告されている。PsbA3-PSIIは PsbA1-PSIIと比べると僅 かに酸素発生活性が高く⁵⁾、PheoとQ_Aの酸化還元電 位がそれぞれ 17 mV、41 mV 高い⁶⁻⁹⁾。PsbA3-PSII と PsbA1-PSII との間で異なっているアミノ酸のいくつか がこれら電子伝達成分の近傍に存在しているため、こ れらアミノ酸の違いが2つのPSII間の差異の原因とな っているのではないかと考えられている。しかしこれ まで立体構造が明らかにされているのは通常条件下 で培養された Thermosynechococcus vulcanus 株由来の PSII、すなわち PsbA1-PSII であり¹⁰⁾、 PsbA3-PSII の 結晶構造は未知である。このため、PsbA3-PSIIの構造・ 機能研究はあくまで PsbA1-PSII の結晶構造に基づい た構造予測の域を出ず、PsbA3-PSIIの構造情報が待ち 望まれていた。そこで本研究では psbA3 遺伝子のみを 発現する変異株から PsbA3-PSII を単離・精製し、結晶 化・結晶構造解析を行い、得られた PsbA3-PSII の構造 を PsbA1-PSII の構造と比較することで両者の構造的 相違を明らかにし、アミノ酸の置換が機能へ及ぼす影 響を明らかにして PSII の機能をより深く理解するこ とを目的とした。

2. PsbA3-PSIIの培養・精製・結晶化・X 線結 晶構造解析

高純度の PsbA3-PSII の結晶化試料を得るために遺 伝子改変によって psbA1、psbA2 遺伝子を欠失させ、 psbA3 遺伝子のみを発現する変異株を用いた。20 L ス ケールの T. elongatus 培養細胞から PsbA1-PSII とほぼ 同様の方法を用いて最終的に約 5 mg Chl (50 mg 強の PSII タンパク質に相当)の PsbA3-PSII の二量体を得た。 精製サンプルをクリアネーティブ電気泳動 (CN-PAGE)法、SDS 電気泳動(SDS-PAGE)法を用いて 分析したところ、これまでに良質な結晶が得られてい る PsbA1-PSII 二量体と同程度の純度であり、複合体を 構成するサブユニットの欠落等も見られなかった。Oil Batch 法を用いて結晶化を行ったところ半日後には結 晶が析出し、3 日後には最大で 1000 µm×100 µm×50 µm のサイズまで成長した(図1)。

析出した結晶は低温回折実験に使用するため、結晶 化溶液の組成に抗凍結剤として 20%の PEG3000 と 25%の DMSO を添加した溶液へ交換した。PSII 結晶は 膜タンパク質の結晶であるため、非常に脆く急激な環 境変化によって容易に劣化してしまうことが分かっ ていたので、凍結用溶液への置換操作は 10 以上のス テップを経てゆっくり行った。抗凍結処理を施した結

図 1 PsbA3-PSII 二量体の結晶

Oil Batch 法得られた PsbA3-PSII 二量体の結晶。結晶化後3日目に撮影したもの。

晶は窒素気流吹き付け冷却装置を用いて 100 K ですば やく凍結し、X 線回折実験まで液体窒素中に保管した。 回折データは SPring-8 のビームライン BL41XU、 BL44XU で収集した。得られた回折データを指数付 け・積分・スケール合わせした後、PsbA1-PSII のモデ ルを用いた分子置換法によって初期位相を求め、精密 化を行い最終的に 1.9 Å 分解能における PsbA3-PSII の 構造を決定した。回折実験と結晶構造解析の統計値を 表1に示す。

3. PsbA3-PSIIの全体構造

決定した PsbA3-PSII の構造は PsbA1-PSII と非常に 良く似ており、PSII 全体でのペプチド主鎖同士を比較 した場合、温度因子の高い、各サブユニットのC末端、 N 末端部分を除けば、二乗平均平方根(RMSD)は 0.21 Å で、その標準偏差は 0.19 Å であった。RMSD の値が 0.4 以上であるアミノ酸に注目すると PsbA3-Gly310 と その近辺の PsbE サブユニットと PsbV サブユニットの 一部に集中して分布している。これは分子表面に存在 する PsbA1-Lys310 が PsbA3-PSII では Gly310 へ変異し たことにより、D1 タンパク質と PsbE、 PsbV との相 互作用の様式が変化したことによると考えられる。こ れらの結果から、PsbA3-PSII と PsbA1-PSII の間での 21のアミノ酸の相違は D1 タンパク質の全体構造には 殆ど影響を与えず、一部の膜外領域の相違がサブユニ ットの相対配置に影響を与えていることが言える。し かし、以下に述べるように電子伝達成分の近傍に存在 する膜内領域のアミノ酸の相違により、それぞれの電 子伝達成分の性質にも影響を与えることが明らかに

Data collection statistic	cs			
Beamline	BL41XU,SPring-8,JAPAN			
Wavelength(Å)	0.9000			
Resolution(Å)	95.57-1.90 (2.01-1.90)			
Measured reflection	4,275,972			
Unique reflections	628,112			
Rmerge(%)	8.6 (131.1)			
<i>/<σ(I)></i>	15.81 (1.68)			
Completeness(%)	99.60 (99.40)			
Redundancy	6.80 (6.82)			
Space group	P212121			
unit cell(Å)	a=122.3, b=228.6, c=286.9			
Structural refinement statistics				
R-free	0.1833			
<i>R</i> -work	0.1540			
R.m.s.d				
Bond (Å)	0.01			
Angle (°)	1.441			
Rmachandranplot				
Favored (%)	97.9			
Allowed (%)	0.9			
Outlier (%)	0.3			

表1 PsbA3-PSIIのX線回折データと構造解析結果の 統計値

なった。

4. 電子伝達成分への影響

これまでの機能解析により PsbA1-PSI と比べて PsbA3-PSII では酸素発生活性が若干高く、電子伝達成 分の Pheo と Q_A の酸化還元電位がそれぞれ 17 mV、41 mV高いことがわかっている。PsbA3-PSII と PsbA1-PSII の D1 タンパク質の構造を詳細に比較したところ、こ れら機能の差異を説明し得る構造的な違いが幾つか 見つかった。

そのうちの一つが二次電子受容体 Q_B とその近傍に 存在しているガラクト脂質のひとつである、スルホキ ノボシルジアシルグリセロール (SQDG)での構造変化 である。この SQDG の周辺では PsbA1-S270、 PsbA1-V281 がそれぞれ PsbA3-A270、 PsbA3-I281 に 変化している。PsbA1-Ser270 には水素結合した水分子 があり、この水分子は 3.6 Å の平均距離(A モノマー 3.5 Å、B モノマー 3.6 Å)で SQDG の頭部と相互作用 しているが、S270A の変異により Ala270 と水分子との

水素結合が失われた。このため、PsbA3-Ala270とSQDG との相互作用も失われることになるが、PsbA1-Ser270 と水素結合していた水分子は SQDG の頭部へ近寄り、 3.2 Å (Aモノマー 3.4 Å、Bモノマー 3.0 Å)の平均 距離で水素結合を形成し、SQDG の頭部を安定化させ た。また、PsbA1-Val281から PsbA3-Ile281への変異に より SQDG の炭化水素鎖が QBのイソプレノイド鎖の 方へ大きく押し出されるように構造変化し、SQDG と QBの相互作用を強めさせた(図 2)。さらに、S270A 近傍に存在する Ser264 と QB頭部の水素結合距離は 2.7 Å (A モノマー 2.63 Å、B モノマー 2.7 Å) から 2.5 Å (A モノマー 2.5 Å、B モノマー 2.5 Å) へ短くなり、 QBの結合が PsbA3-PSII で安定化されたことが示唆さ れた。QBの温度因子に注目すると、QB分子全体の温 度因子の平均は PsbA1-PSII では 72.7 Å² (A モノマー 68.6 Å², B \neq / \neg -76.8 Å²), PsbA3-PSII τ t 75.2 Å² $(A \neq / = -70.2 \text{ Å}^2, B \neq / = -80.2 \text{ Å}^2)$ $(a \neq)$ 頭部のみの温度因子の平均は PsbA1-PSII では 75.2 Å² $(A \in / \neg -69.2 \text{ Å}^2, B \in / \neg -81.3 \text{ Å}^2), PsbA3-PSII$ では 66.4 Å² (A モノマー64.9 Å²、B モノマー67.8 Å²) であった。従って Q_B 全体の温度因子は同程度である が、QB頭部の温度因子はPsbA1-PSIIよりもPsbA3-PSII の方が有意に低下しており、温度因子の比較において も Q_B 頭部が安定化されたことが支持された。一方、 酸化還元電位の違いが知られている QA では顕著な構 造変化が見られなかった。この結果の違いには2つの 原因が考えられる。1 つは PsbA3-PSII の QB 頭部の安 定化が Q_Aに影響を及ぼし、Q_A頭部も安定化されるた めに酸化還元電位が PsbA1-PSII よりも 41 mV 上昇し たためである。もう1つの可能性は、QAとその配位子 との結合距離に違いが生じ、QAの安定性に影響を与え たためである。本構造解析において PsbA3-PSIIの QA と配位子の距離を PsbA1-PSII と比較すると 0.1 Å 程度 の微細な変化は見られている。ただし、これらの違い がQAの安定性の違いに寄与するか、それとも1.9Åの 分解能による構造解析では誤差範囲になるかは判定 できない。この点を明らかにするにはより精密な構造 解析が必要である。

図 2 Q_B及び SQDG 周辺の構造

電子伝達成分の Q_B とその近くに存在する SQDG の構造。(A) PsbA3-PSII の D1 タンパク質の N 末端から 4 番目の膜貫通へ リックスを青紫色、Q_Bを黄色、SQDG をオレンジ色、水分子を赤色で表した。PsbA3-PSII と PsbA1-PSII で配列が異なる、 PsbA3-Ala270 (PsbA1-Ser270)、 Q_B との水素結合の距離に変化が見られた Ser264 をスティック表示した。 PsbA3-Ala270(PsbA1-Ser270)から SQDG、及び Ser264 と Q_B との水素結合の距離をÅ単位で示した。SQDG、 Q_B 近傍の疎水 性アミノ酸である、Phe274、 Trp278 をスティック表示した。構造比較のため PsbA3-PSII (今回解析した構造) と PsbA1-PSII (PDBID=3ARC) と重ね合わせて PsbA1-PSII を灰色で示した。 (B)図 2A を D1 タンパク質の 4 番目の膜貫通へリックスに 対して図 2A から水平方向に 90°回転させた。

Pheo は PSII において反応中心 P₆₈₀から直接電子を 受け取る電子受与体であり、これまで、Pheo の酸化還 元電位が PsbA1-PSII に比べて PsbA3-PSII では 17 mV 増加することが報告されている⁶⁾。Pheo の周辺に位置 する PsbA1- Gln130、 PsbA3- Glu130 はそれぞれ Pheo の 13 ケト基と水素結合しているが、その結合距離に 違いが見られた。PsbA1-PSII では結合距離は 2.9 Å で あったが、PsbA3-PSII では 2.7 Å と 0.2 Å 短くなってお り、PsbA3- Glu130 で Pheo への水素結合が強化されて いる (図 3)。一般に水素結合が 1 つ増加することによ り酸化還元電位が 60-100 mV 程度増加することが報告 されているので¹¹⁾、PsbA3-PSII における Glu130 と Pheo の水素結合の安定化は Pheo の酸化還元電位の変化を よく説明している。

5. おわりに

これまで、PsbA3-PSIIと PsbA1-PSIIの機能に関する 比較は行われてきたが、PsbA3-PSIIの結晶構造が未知 であったため、PsbA3-PSIIの機能研究はあくまで PsbA1-PSIIの結晶構造に基づいた構造予測の域を出な かった。そこで本研究では psbA3 遺伝子のみを発現す る変異株から PsbA3-PSII を単離・精製・結晶化・結晶 構造解析し、得られた PsbA3-PSII の構造を PsbA1-PSII の構造と比較することで、両者のアミノ酸の置換が機 能へ及ぼす影響を立体構造のレベルで明らかにした。

図 3 Pheo 周辺の構造

Pheo とその近くに存在する D1 タンパク質の 2 番目の膜 貫通へリックスを示す。PsbA3-PSII、PsbA1-PSII を重ね 合わせ、PsbA3-PSII を青紫色、PsbA1-PSII を灰色で表示 した。PsbA3-PSII と PsbA1-PSII で配列が異なる、 PsbA3-Glu130 (PsbA1-Gln130)、及び PsbA3-Val123 (PsbA1-Ala123)、Pheo との距離に変化が見られた Phe119 をスティック表示した。PsbA3-Glu130 (PsbA1-Gln130)か ら Pheo との水素結合の距離をÅ単位で示した。構造比較 のため PsbA3-PSII (今回解析した構造) と PsbA1-PSII (PDBID=3ARC) と重ね合わせて PsbA1-PSII を灰色で示 した。

立体構造の相違に基づき、これまでに蓄積された PsbA3-PSIIとPsbA1-PSIIの機能的相違をより詳細に理 解できると期待される。

謝辞

本稿で紹介した研究において、PsbA3-PSII サンプル の精製・結晶化は岡山大学沈建仁研究室の秋田総理助 教から多大な助力をいただいた。また、このような執 筆の場を与えてくださった日本光合成学会および編 集委員の皆様にお礼を申し上げる。

Received February 27, 2015; Accepted March 16, 2015

参考文献

 Kos, P.B., Deak, Z., Cheregi, O. and Vass, I. (2008) Differential regulation of *psbA* and *psbD* gene expression, and the role of the different D1 protein copies in the cyanobacterium *Thermosynechococcus elongatus* BP-1. *Biochim. Biophys. Acta* 1777, 74– 83.

- Mulo, P., Sakurai, I. and Aro, E.-M. (2012) Strategies for *psbA* gene expression in cyanobacteria, green algae and higher plants: From transcription to PSII repair. *Biochim. Biophys. Acta* 1817, 247–257.
- Sander, J., Nowaczyk, M., Buchta, J., Dau, H., Vass, I., Deak, Z., Dorogi, M., Iwai, M. and Rögner, M. (2010) Functional characterization and quantification of the alternative PsbA copies in *Thermosynechococcus elongatus* and their role in photoprotection, J. Biol. Chem. 285, 29851–29856.
- Mulo, P., Sicora, C. and Aro, E.-M. (2009) Cyanobacterial *psbA* gene family: optimization of oxygenic photosynthesis. *Cell. Mol. Life Sci.* 66, 3697–3710.
- Sugiura, M, Iwai, E., Hayashi, H. and Boussac, A. (2010) Differences in the interactions between the subunits of Photosystem II dependent on D1 protein variants in the thermophilic cyanobacterium *Thermosynechococcus elongatus. J. Biol. Chem.* 285, 30008–30018.
- Sugiura, M., Kato, Y., Takahashi, R., Suzuki, H., Watanabe, T., Noguchi, T., Rappaport, F. and Boussac, A. (2010) Energetics in Photosystem II from *Thermosynechococcus elongatus* with a D1 protein encoded by either the *psbA1* or *psbA3* gene. *Biochim. Biophys. Acta* 1797, 1491–1499.
- Sugiura, M., Boussac, A., Noguchi, T. and Rappaport, F. (2008) Influence of Histidine-198 of the D1 subunit on the properties of the primary electron donor, P680, of Photosystem II in *Thermosynechococcus elongatus. Biochim. Biophys. Acta* 1777, 331–342.
- Sugiura, M., Azami, C., Koyama, K., Rutherford, A.W., Rappaport, F., Boussac, A. (2014) Modification of the pheophytin redox potential in *Thermosynechococcus elongatus* Photosystem II with PsbA3 as D1. *Biochim Biophys Acta* 1837, 139–48.

- Sugiura, M. and Boussac, A. (2014) Some Photosystem II properties depending on the D1 protein variants in *Thermosynechococcus elongatus*. *Biochim. Biophys. Acta* 1837, 1427–1434.
- 10. Umena, Y., Kawakami, K., Shen, J.-R. and Kamiya,

N. (2011) Crystal structure of oxygen-evolving Photosystem II at a resolution of 1.9 Å. *Nature* 473, 55–60.

Crystal Structure of Oxygen-Evolving Photosystem II from a Strain Expressing the *psbA3* Gene Only

Natsumi Ugai¹'*, Michihiro Suga¹, Miwa Sugiura², Masako Iwai³, Masahiko Ikeuchi³ and Jian-Ren Shen¹

¹Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University, ²Proteo-science Research Center, Ehime University, ³Graduate School of Arts and Science, The University of Tokyo

研究紹介

新奇クロロフィルを持つシアノバクテリアのエネルギー移動機構 の解析[§]

¹東京理科大学大学院 科学教育研究科、²神戸大学分子フォト研究センター ³JST CREST、⁴東京理科大学大学院 理学研究科、⁵東京理科大学 理学部、⁶JST さきがけ 篠田 稔行^{1.*} 秋本 誠志^{2.3} 二井 大輔⁴太田 尚孝⁵ 鞆 達也^{5.6}

クロロフィル(Chl)は光合成の光捕集・電荷分離反応に関わる可視域に吸収帯を持つ色素であるが、2010 年に、既知の酸素発生型光合成生物において最も低エネルギー側に吸収極大を持つ新奇 Chlfを持つ海 洋性シアノバクテリアの存在が報告された。このシアノバクテリアは白色光下では Chlfを蓄積せず、 Far-red (FR)光下で培養すると Chlfを蓄積する。白色光および FR光下で培養した細胞の定常低温吸収 スペクトルを測定すると FR光下で培養した細胞において Chlf由来の 745 nm に極大を持つ蛍光バンド がメインピークとして観測された。また時間分解蛍光スペクトルを測定した結果、励起後すぐに 77 K において Chlaから Chlfにエネルギー移動が生じていることが明らかとなった。これらの結果から得 られた光化学系内における、Chlfの局在部位と機能について紹介する。

1. はじめに

光合成生物は、地球上に無尽蔵に降り注ぐ太陽光を 用いてエネルギー変換を行い、特に高等植物・藻類お よびシアノバクテリアが行う酸素発生型光合成にお いてクロロフィル(Chl)が光の捕集、エネルギー移動や 電子伝達といった重要な役割を担っている。従来の酸 素発生型光合成では可視光領域に吸収帯を持つ Chl a、 b、 c が光エネルギーを捕集し (Prochlorococcus では divinyl-Chl a、 b型)、Chl a を初期電子供与体として 電荷分離を行い、化学エネルギーへと変換していると 考えられていた。しかし Chl a よりも長波長側に吸収 極大を持つ Chl d を主要光合成色素とするシアノバク テリア Acaryochloris marina が 1996 年に宮下らにより 発見され¹⁾、現在では地球上のあらゆる水圏に Chl d を持つシアノバクテリアが普遍的に分布しているこ とが報告されている²⁻⁵⁾。Chl dはChl aのクロリン環 の C3 位がビニル基からフォルミル基へと変化してお り、この構造の違いにより低エネルギー光を吸収する ことができる。A. marina の光化学系 I (PS I)、および光

[§]第5回日本光合成学会シンポジウム ポスター発表賞受賞 論文 ^{*}連絡先 E-mail: t.shinor@gmail.com 化学系 II (PS II)における電荷分離を担う Chl 種は、Chl a を反応中心 Chl とする一般的なシアノバクテリアと は異なり、Chl d であることが報告された^{6,7)}。Chl d は Chl a に比べエネルギーが約 100 mV 低い。この低エネ ルギー光の利用は、酸化側の電位は変えず、還元側の 初期電子受容体および第二次電子受容体の電位を正 電位方向にシフトすることで補償している⁸⁾。

Chl *d* よりもさらに長波長側に吸収極大を持つ新奇 Chl *f* を持つシアノバクテリア Halomicronema hongdechloris がオーストラリアのハメリンプールに現 生するストロマトライトから 2010 年に Chen らによっ て発見された⁹。Chl *f* は Chl *a* のクロリン環の C2 位が メチル基からフォルミル基に変化することで、Chl *a* より吸収極大が約 40 nm 程度、低エネルギーシフトし、 既知の酸素発生型 Chl 類の中で最も低エネルギー光を 利用することができる(図 1)。またほぼ同時期に琵琶湖 から Chl *f* を持つシアノバクテリアが大久保らにより 単離された¹⁰⁾。他にも Chl *f* および Chl *d* の両方を合 成・蓄積するシアノバクテリアが報告されている¹¹⁾。 Chl *f* の蓄積は Far-red (FR)光下で培養されたシアノバ クテリアにおいてのみ生じ、白色光下での培養では蓄 積しないという特徴がある¹⁰⁻¹²⁾。*H. hongdechloris* にお

図1 有機溶媒中における Chl の吸収スペクトル 黒線: Chl *a*、青線: Chl *b*、橙線: Chl *c*₁、緑線: Chl *d*、赤 線: Chl *f* (Chl *f* 以外の溶媒はアセトン、Chl *f* はメタノー ルを主成分とする溶媒)

いても白色光下で培養すると Chl *f* を発現しないが、 740 nm に発光極大を持つ LED 光 (以降、FR 光とする) 下で培養すると約 10%の Chl *f* を蓄積する。*H. hongdechloris* における Chl *f* の機能や結合部位につい ては明らかになっていない¹²⁾。

本研究では Chl d よりも低エネルギー光を用いるこ とができる Chl f を含む光化学系のエネルギー移動機 構を明らかにするために、FR 光および白色光下で培養 した H. hongdechloris 細胞における時間分解蛍光測定 を行い、解析をすることで Chl f の機能や結合部位につ いて明らかにしたので、その概要について紹介する。

2. 吸収スペクトルと蛍光スペクトル

図 2 に FR 光および白色光下で培養した H. hongdechloris 細胞の室温吸収スペクトルを示す。白色 光下で培養した細胞では Chl a の Qy 帯の吸収極大が 676 nm に、フィコビリゾーム由来の吸収極大が 625 nm に存在し、一般的な Chl a 型シアノバクテリアの室温

図 2 H. hongdechloris 細胞の室温吸収スペクトル (A)青線: 白色光培養、(B)赤線: FR 光培養

吸収スペクトルに類似している(図 2A)。一方、FR 光 下で培養した細胞では 730 nm 付近に Chlf 由来と思わ れる吸収帯が存在し、フィコビリゾーム由来の吸収帯 が減少した(図 2B)。この吸収スペクトルの違いにより 図 3 に示すように細胞の色彩にも変化が生じた。また 図 4 に示すようにメタノールで抽出した色素の吸収ス ペクトルからも Chlf は FR 光下でのみ発現し、全 Chl の約 10%が Chlf であった。この色素組成は HPLC に よる色素定量でも確認している。

図3 培養細胞の色彩 (左)白色光で培養した細胞。フィコビリゾーム由来の青み を帯びた色彩をしている。(右)FR 光で培養した細胞。フ ィコビリゾームが減少したことで黄緑色を呈している。

これらの色素組成の異なる *H. hongdechloris* 細胞の 低温吸収スペクトルを図5に示す。両細胞において670、 678 nm に Chl *a* の Qy 帯の吸収極大が存在した。白色光 培養の細胞において室温吸収スペクトルでは確認で きなかった新たな吸収帯が710 nm に存在した(図5A)。 細胞のメタノール抽出した色素の吸収スペクトルと HPLC から白色光培養時では Chl *f* を蓄積しないため、 710 nm の長波長に位置する吸収極大は Chl *a* 由来であ ることが明らかになった。このような長波長領域に存

図 4 H. hongdechloris 細胞からメタノールで抽出した 色素の吸収スペクトル 青線: 白色光培養、赤線:FR 光培養

在する Chl a は red Chl と呼ばれ、Arthrospira (Spirulina) platensis においても報告されている¹³。A. platensis は H. hongdechloris と同様に糸状性で非窒素固定型のシ アノバクテリアである。red Chl の有無とシアノバクテ リアの系統性に関連があるかは不明であり、系統的な 解析が必要である。

図5*H. hongdechloris* 細胞の77 K吸収スペクトル (A)青線: 白色光培養、(B)赤線: FR 光培養

対して FR 光培養の細胞では 713 nm に吸収極大を持 ち、白色光培養時よりも強度が 2.5 倍とより多くの red Chl の存在を観測できた(図 5B)。この吸収極大が白色 光における red Chl の極大よりも 3 nm 長波長側に位置 すること、また強度が増加したこと、さらには吸収帯 のバンド幅は白色光のものと比較して長波長側に広 がっていることから、長波長側になるにつれて red Chl *a* よりも Chl *f* の影響が大きくなると示唆された。

図 6 に 425 nm で励起したときの細胞の低温蛍光ス ペクトルを示す。白色光培養細胞では 651 nm、684 nm、 727 nm にそれぞれフィコビリゾーム PS II、PS I 由来 の蛍光帯が観測され、既知の Chl a 型のシアノバクテ リアの低温蛍光スペクトルに類似していた(図 6A)。一 方、FR 光下で培養した細胞では、それらの蛍光強度が 減少し、745 nm にユニークな蛍光極大が存在した(図 6B)。この 745 nm に極大を持つ蛍光は Chl f 由来であ ると示唆された。

図 6 H. hongdechloris 細胞の 425 nm 励起 77 K 蛍光スペ クトル (A)青線: 白色光培養、(B)赤線: FR 光培養

3. 時間分解蛍光スペクトル

図7に77Kにおいてフェムト秒レーザーで励起後の H. hongdechloris 細胞の時間分解蛍光スペクトルを示 す。白色光で培養した細胞のスペクトルは既知のシア ノバクテリアの時間分解蛍光スペクトルとよく似て おり^{14,15)}、PS II 由来の蛍光帯である F685、F695 およ び、PS I 由来の F730 が観測された(図 7A)。励起後約 1 ns 弱から 742 nm に極大を持つ蛍光帯が現れ、時間後 期に消失した。このことから、F730 の一部から F742 ヘエネルギー移動があったことが示唆された。この F742 は先の低温吸収スペクトルで現れた低エネルギ 一側の Chl a 由来であると推測された。

一方、FR 光下で培養した細胞の時間分解蛍光スペ クトルは大きく異なっていた(図7B)。励起後の時間初 期ではPSIIおよびPSI由来の蛍光帯が観測されたが、 すぐに消失した。これに対して長波長側にある蛍光シ グナルは時間初期においてはややブロードであった が、時間後期にはシャープになり、748 nm に極大を持 った。この蛍光シグナルは Chlf 由来であると推測され る。Chl a のバンドが消失し、Chlf のシグナルが現れ ることは、低温において Chl a から Chlf へのエネルギ ー移動が、励起後すぐに生じたことを示唆する。

図 7 H. hongdechloris 細胞の 425 nm 励起 77 K 時間分解 蛍光スペクトル (A)青線: 白色光培養、(B)赤線: FR 光培養

次に時間分解蛍光減衰曲線の685 nm と745 nm にお ける寿命成分の解析を行った結果を表 1 に示す。685 nm における観測では FR 光下で培養した細胞は 10 ps 未満と 130 ps の時間初期で total amplitude の97%を占 めているのに対し、白色光下では 150 ps の成分が 70% を占めていることから、FR 光下の培養した細胞におい て、新しいエネルギー移動経路が確立したことが明ら かとなった。また Chlfと帰属される 745 nm で観測し た蛍光減衰曲線には 40 ps 未満の速い蛍光の立ち上が りが存在することから Chlfは Chla の近傍に位置して いることが示唆された¹⁶。

表1 励起波長 425 nm における蛍光寿命と amplitude

細胞	波長(nm)	蛍光寿命(amplitude)			
白色光	685	150 ps	520 ps	1.8 ns	5.1 ns
		(0.702)	(0.191)	(0.096)	(0.011)
	745	70 ps	400 ps	1.0 ns	3.0 ns
	745	(-0.959)	(0.731)	(0.255)	(0.014)
FR光	685	<10 ps	130 ps	1.1 ns	4.4 ns
	005	(0.857)	(0.111)	(0.023)	(0.009)
	745	40 ps	360 ps	1.5 ns	3.2 ns
	743	(-0.885)	(0.379)	(0.415)	(0.206)

さらに Chl f が電子伝達反応に関わっているかにつ いて検討した。通常、PS II では 10-30 ns 領域において PS II の電荷再結合由来の遅延蛍光が観測でき、反応中 心色素の Chl 種に応じた位置に遅延蛍光が現れる。本 研究において、白色光、FR 光下で培養した細胞につい て 77 K で蛍光の減衰を観測しフィッティングを行っ た結果、685 nm で観測したときに Chl a 領域に 10-20 ns 程度の成分を仮定するとよく一致した(図 8A)。このこ とから、*H. hongdechloris* の PS II における反応中心 Chl は Chl a であることが示唆された。

4. おわりに

H. hongdechloris 細胞における 77 K 時間分解蛍光ス ペクトルにおいて励起直後に Chl a から Chl f へのエネ ルギー移動が観測されたことから、これらは近傍関係 にあり、生理温度では Chl f から Chl a への Up-hill な エネルギー移動が示唆された。このことから Chl f はア ンテナ色素として機能していることが明らかとなっ た。本稿では紹介しなかったが、フェムト秒での蛍光 分光法により、Chl f と Chl a の励起エネルギーが室温 でシェアされていることを最近示した¹⁷⁾。

蛍光減衰曲線を解析した結果、H. hongdechloris の

図 8 H. hongdechloris 細胞の 425 nm 励起 77 K 遅延蛍光 減衰スペクトル 青線:白色光培養、赤線:FR 光培養 (A)観測波長 685 nm、(B)観測波長 745 nm

PS II 反応中心 Chl は Chl a であると示唆されたが、 amplitude が小さいことから、まだ確かではない。 amplitude が小さい理由としては、測定対象を細胞とし たためであり、これを改善するためには最小の電荷分 離機能を持つ光化学系反応中心複合体を単離精製し 再度測定を行うことが必須であり、さらなる実験が必 要である。当研究グループは PS I および PS II を単離 精製に成功したため H. hongdechloris の光化学系にお ける Chl f のより詳細な機能や局在について明らかに していく予定である。

謝辞

本研究はオーストラリア、シドニー大学の Min Chen 博士とロシア科学アカデミーの Suleyman I. Allakhverdiev 教授との共同研究により得られたもので あり、御礼申し上げたい。また、この内容は JST さき がけ研究の支援を受けて行われた。

Received February 27, 2015; Accepted March 28, 2015

参考文献

- Miyashita, H., Ikemoto, H., Kurano, N., Adachi, K., Chihara, M. and Miyachi, S. (1996) Chlorophyll *d* as a major pigment. *Nature* 383, 402.
- Murakami, A., Miyashita, H., Iseki, M., Adachi, K. and Mimuro, M. (2004) Chlorophyll *d* in an epiphytic cyanobacterium of red algae. *Science* 303, 1633.
- Miller, S.R., Augustine, S., Olson, T.L., Blankenship, R.E., Selker, J. and Wood, A.M. (2005) Discovery of a free-living chlorophyll *d*-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. *Proc. Natl. Acad. Sci.* U.S.A. 102, 850–855.

- Kühl, M., Chen, M., Ralph, P.J., Schreiber, U. and Larkum, A.W.D. (2005) A niche for cyanobacteria containing chlorophyll *d. Nature* 433, 820.
- Kashiyama, Y., Miyashita, H., Ohkubo, S., Ogawa, N.O., Chikaraishi, Y., Takano, Y., Suga, H., Toyohuku, T., Nomaki, H., Kitazono, H., Nagata, T. and Ohkouchi, N. (2008) Evidence of Global Chlorophyll *d. Science* 321, 658.
- Hu, Q., Miyashita, H., Iwasaki, I., Kurano, N., Miyachi, S., Iwaki, M. and Itoh, S. (1998) A photosystem I reaction center driven by chlorophyll *d* in oxygenic photosynthesis. *Proc. Natl. Acad. Sci.* U.S.A. 95, 13319–13323.
- Tomo, T., Okubo, T., Akimoto, S., Yokono, M., Miyashita, H., Tsuchiya, T., Noguchi, T. and Mimuro, M. (2007) Identification of the special pair of photosystem II in a chlorophyll *d*-dominated cyanobacterium. *Proc. Natl. Acad. Sci. U.S.A.* 104, 7283–7288.
- Allakhverdiev, S.I., Tomo, T., Shimada, Y., Kindo, H., Nagao, R., Klimov, V.V. and Mimuro, M. (2010) Redox potential of pheophytin *a* in photosystem II of two cyanobacteria having the different special pair chlorophylls. *Proc. Natl. Acad. Sci. U.S.A.* 107, 3924–3929.
- Chen, M., Schliep, M., Willows, R.D., Cai, Z.-L., Neilan, B.A. and Scheer, H. (2010) A red-shifted chlorophyll. *Science* 329, 1318–1319.
- 大久保智司 (2012) 新しく発見されたクロロフ ィルf. 光合成研究 22, 80-86.
- Gan, F., Zhang, S., Rockwell, N.C., Martin, S.S., Lagarias, J.C. and Bryant, D.A. (2014) Extensive remodeling of a cyanobacterial photosynthetic

apparatus in far-red light. Science 345, 1312-1317.

- Chen, M., Li, Y., Birch, D. and Willows, R.D. (2012) A cyanobacterium that contains chlorophyll *f* – a red-absorbing photopigment. *FEBS Lett.* 586, 3249– 3254.
- Arba, M., Aikawa, S., Niki, K., Yokono, M., Kondo, A. and Akimoto, S. (2013) Differences in excitation energy transfer of *Arthrospira platensis* cells grown in seawater medium and freshwater medium, probed by time-resolved fluorescence spectroscopy. *Chem. Phys. Lett.* 588, 231–236.
- Akimoto, S., Yokono, M., Yokono, E., Aikawa, S. and Kondo, A. (2014) Short-term light adaptation of a cyanobacterium, *Synechocystis* sp. PCC 6803, probed by time-resolved fluorescence spectroscopy. *Plant Physiol. Biochem.* 81, 149–154.
- Shimada, Y., Tsuchiya, T., Akimoto, S., Tomo, T., Fukuya, M., Tanaka, K. and Mimuro, M. (2008) Spectral properties of the CP43-deletion mutant of *Synechocystis* sp. PCC 6803. *Photosynth. Res.* 98, 303–314.
- Tomo, T., Shinoda, T., Chen, M., Allakhverdiev, S.I. and Akimoto, S. (2014) Energy transfer processes in chlorophyll *f*-containing cyanobacteria using time-resolved fluorescence spectroscopy on intact cells. *Biochim. Biophys. Acta* 1837, 1484–1489.
- Akimoto, S., Shinoda, T., Chen, M., Allakhverdiev, S.I. and Tomo, T. (2015) Energy transfer in the chlorophyll *f*-containing cyanobacterium, *Halomicronema hongdechloris*, analyzed by time-resolved fluorescence spectroscopies. *Photosynth. Res.* in press.

Spectroscopic Analysis of New Chlorophyll-Containing Cyanobacterium

Toshiyuki Shinoda^{1,*}, Seiji Akimoto^{2, 3}, Daisuke Nii⁴, Hisataka Ohta⁵ and Tatsuya Tomo^{5, 6}

¹Graduate School of Mathematics and Science Education, Tokyo University of Science, ²Molecular Photoscience Research Center, Kobe University, ³CREST, Japan Science and Technology Agency (JST), ⁴Graduate School of Science, Tokyo University of Science, ⁵Faculty of Science, Tokyo University of Science, ⁶PRESTO, Japan Science and Technology Agency (JST)

解説特集

「光合成の多様な世界について」

Editors: 鞆 達也(東京理科大学 理学部) 園池公毅(早稲田大学 教育・総合科学学術院)

序文

- 鞆 達也(東京理科大) 園池 公毅(早稲田大) 35
- 解説クロロフィルの光エネルギー捕集にみられる多様性秋本 誠志(神戸大)鞆 達也(東京理科大)36

解説 原形質流動による成長制御から考える植物の光戦略

富永 基樹(早稲田大) **42**

- 解説 自然界の多様性を生かした研究戦略:珪藻の世界
 - 菓子野 康浩(兵庫県立大) 48
- 解説 クロロフィルを制した者が光環境を征した? 光合成生物を「食べる」生き様の舞台裏
 柏山 祐一郎(福井工業大) 横山 亜紀子(筑波大) 民秋 均(立命館大) 58

序文[‡]

東京理科大学 理学部 鞆 達也¹ 早稲田大学 教育・総合科学学術院 園池 公毅²

日本光合成学会の会長を務められていた村田紀夫さんは、十二、三年前に「今はゲノムが決まった モデル生物がもてはやされているけれども、すぐに、面白い生物を見つけたから、ちょっとゲノムを 決めて研究してみよう、という時代になりますよ」とおっしゃっていました。二十世紀の最後の数年 に始まった生物のゲノム配列決定の流れを受けて、シロイヌナズナや Synechocystis sp. PCC 6803 など のモデル生物に研究資源を集中して投下すべきであるという議論がまだなされていた時代のことです。 それまでも、光合成の生化学研究においては、ホウレンソウが事実上のモデル生物として扱われてい た時代がありました。口の悪い人は、「最近の(1980年代の話です)光合成研究は、ホウレンソウ学に 過ぎない」などと言っていたものです。

光合成に限らず、ほとんどすべての生物学研究は「普遍性の追求」と「多様性の認識」にその基礎 を置いています。そして、まず、基本的なメカニズムを追求する上では、多様性をある程度犠牲にし ても、普遍性(と信じられているもの)に集中することによって効率的に研究を進めることが重要で あるという考え方は理解できます。事実、ホウレンソウにおいて調べられた光化学系の反応中心の構 造と機能は、酸素発生型の光合成生物にきわめてよく保存されていることが明らかとなりました。陸 上植物とシアノバクテリアの光化学系の電子伝達成分の配置を並べて見せられても、素人目にはほと んど区別がつきません。一方で、光エネルギーの捕集に働く集光装置に関しては、藻類を中心に、そ の多様性が際立っています。

今回、多様性をキーワードにして行なった日本光合成学会のシンポジウムの演者の方々に、解説特 集としてそれぞれ解説記事を執筆していただきました。この背景には、普遍的な部分の理解が進んだ ことによって、多様性を、単なる事実の羅列としてではなく、共通の基盤の下に統一的に考えること ができる時代になったという認識があります。また、シンポジウムでも議論になりましたように、そ もそも、普遍性自体が、多様性と比較して初めて定義できるものであるという側面もあると考えます。 今後は、その詳細が明らかになりつつある普遍性の基盤に立って、多様性を解析することこそが、ど の分野の研究にも必要となってくるはずです。そのような認識に基づいて、光合成研究、あるいはそ の周辺分野の多様性をキーワードにした解説記事を今号と次号の二回に分けて掲載します。今号では、 クロロフィルの多様性について秋本誠志さんに、原形質流動の速度を決めるミオシンの多様性につい て富永基樹さんに、珪藻の多様性について菓子野康浩さんに、クロロフィルと光合成生物の進化につ いて柏山祐一郎さんに執筆をお願いいたしました。ご協力を頂いた方々に感謝いたします。また、本 特集の編集に当たっては、編集長の西山佳孝さんに大変お世話になりました。心からお礼申し上げま す。

^{*}解説特集「光合成の多様な世界について」

¹連絡先 E-mail: tomo@rs.tus.ac.jp

²連絡先 E-mail: sonoike@waseda.jp

解説

クロロフィルの光エネルギー捕集にみられる多様性[‡]

¹神戸大学 分子フォトサイエンス研究センター、²東京理科大学 理学部 秋本 誠志^{1,*} 鞆 達也²

酸素発生型の光合成系では、様々なクロロフィル (Chl) が知られており¹⁻⁶⁾、反応中心やアンテナ色素 タンパク質複合体に存在し、それぞれ、光を吸収して電子の流れに変換をする機能や光を吸収し励起 エネルギーを反応中心まで伝達する機能を担う。反応中心に存在する Chl としては、現在、Chl a、Chl d、DV-Chl a ([8-vinyl]-Chl a)のみが知られているのに対して、アンテナ色素タンパク質複合体にはすべ ての Chl が寄与する。本稿では、Chl が持つアンテナ機能に着目し、室温における Chl の吸収スペクト ル、液体窒素温度(77 K)下における光合成生物細胞の吸収スペクトル、定常・時間分解蛍光スペク トルに関する最近のデータを基に、Chl による光エネルギー捕集に見られる多様性について検討する。

1. クロロフィルの分子構造と光吸収

色素分子の光吸収や発光など、分子と光の相互作用 は、分子の共役構造に依存する。酸素発生型光合成に おける代表的な色素分子である Chl の共役構造は、大 きく分けて、クロリン骨格を持つもの(図 1)とポル フィリン骨格を持つもの(図 2)の 2 つに分けられる ⁷⁻⁹⁾。クロリン型の Chl として分子構造まで明らかにな っているものとして、Chl a、Chl b、Chl d、Chl f、DV-Chl a、DV-Chl b([8-vinyl]-Chl b)があげられる⁶⁻⁸⁾(ジアス テレオマーが存在するものもある^{7,8)}が、光化学系 I 反応中心にしか確認されておらず、光捕集機能を議論 する本稿では取り扱わないこととする)。ポルフィリ ン型 Chl には Chl c があり、Chl c₁、Chl c₂、Chl c₃の 3 つがよく知られている^{7,8)}。この他にも、Chl c に類似 した構造を持つ Chl 系分子(Divinyl protochlorophyllide や Chl c_{CS-170}など)が報告されている¹⁰⁾。

側鎖の影響を無視すれば、クロリン型 Chl は C_{2v} 点 群に属し、ポルフィリン型 Chl は D_{4h} 点群に属してい る^{11,12)}。クロリンやポルフィリンは、紫色から青色に 及ぶ波長領域と赤色の波長領域に吸収帯を持ち、それ ぞれ、Soret 帯 (B 帯) と Q 帯と呼ばれる。クロリン では Q 帯は Q_x 帯と Q_y 帯との 2 つに分離するが、ポル フィリンでは対称性がよいため区別されない⁹⁾。また、

図 1 クロリン骨格を持つク ロロフィルの構造 R はフィチル基。

*解説特集「光合成の多様な世界について」 *連絡先 E-mail: akimoto@hawk.kobe-u.ac.jp

図 2 ポルフィリン骨格を 持つクロロフィルの構造

Chl	Α	В
Chl c ₁	CH ₃ -	CH ₃ CH ₂
Chl c ₂	CH ₃ -	CH ₂ =CH-
Chl c ₃	CH ₃ O-(C=O)-	CH ₂ =CH-
クロリン型 Chl では Q 帯と Soret 帯が同程度のモル吸 光係数を示すのに対して、ポルフィリン型 Chl では Q 帯のモル吸光係数が Soret 帯と比較して著しく小さい ^{7,8,11)}。例えば、クロリン型 Chl である Chl a では、O 帯として4つのピークが確認でき、長波長側から順に Q_v(0,0)、Q_v(1,0)、Q_x(0,0)、Q_x(1,0)と帰属され、Q_v(0,0)帯 は Soret 帯と同程度のモル吸光係数を示す^{7,8)}。一方、 ポルフィリン型である Chl c2の Q 帯は、Soret 帯よりモ ル吸光係数が著しく小さく、2 つのピークが観測され る^{7,8)}。ポルフィリンにおける吸収帯の帰属⁹⁾を基にし、 2 つのピークの間隔が~1300 cm⁻¹であることを考慮す れば、この2つのピークは長波長側からQ(0,0)、Q(1,0) であるとも考えられるが、Q_v帯とQ_x帯に帰属する報 告 ⁷⁾もある。エネルギー移動を理論的に考察するため には遷移双極子モーメントの向きに関する情報が必 要不可欠¹³⁾であり、Chl cのQ帯の電子状態や振動状 態の正確な帰属について、今後の研究が待たれる。

図 3 は、文献から得られるデータを用いて、各 Chl の Soret 帯と Q 帯について、最も長波長に現れるピー クのモル吸光係数を波長に対して図示したものであ る^{7,8,14,15)}。ここで、モル吸光係数の測定は難しく、必 ずしも決定されたものではないことに注意されたい。 たとえば、Chl a と DV-Chl a の Qy帯のモル吸光係数は ほぼ同じであるという報告もある¹⁶⁾。Chl d と Chl f の Soret 帯については、最長波長ピーク(実線)の他に 390-395 nm のピークを点線で示した。溶媒に応じて両 者の相対強度が変化し、例えば、メタノール中の Chl f では短波長側のピークの方が強い¹⁵⁾。

Soret 帯に着目すると、最も短波長に位置するのは Chl a であり、最も長波長にあるのはDV-Chl b である。 Chl c は Soret 帯のモル吸光係数が大きいことが特徴で あり、450 nm 近辺の光エネルギーを捕集するのに有利 である。

光吸収については Chl が持つすべての吸収帯(Soret 帯、Q帯)を考慮する必要があるが、Soret帯で励起さ れた場合でも、100 フェムト秒程度で最低電子励起状 態へと内部転換が起きる17,18)ため、励起エネルギー移 動や電子移動など分子間で起こる現象は、最低電子励 起状態の寄与が大きい。したがって、励起エネルギー 移動や電子移動を考える場合には、各 Chl が持つ Q 帯 のうち、最も長波長側に現れるピークの波長を検討す ることが多い。クロリン型の Chl では、側鎖の違いに より Q_v帯の波長は大きく変化する。現在発見されてい る Chl のうちで、ジエチルエーテル中で Q_v帯が最も長 波長であるものは Chl f であり、Chl a と比較して、約 35 nm 長波長側に吸収ピークを持つ¹⁵⁾。一方、ジエチ ルエーテル中でQ_v帯が最も短波長であるものはChl b であり、Chlaと比較して、約19nm 短波長側に吸収ピ ークを持つ⁸⁾。ポルフィリン型である Chl c では、側鎖 の違いによる O 帯の波長の違いは比較的小さい^{7、8)}。 Q帯の波長が短波長のものから順に並べると、Chl c>

図3各クロロフィルのモル吸光係数を波長に対して図示したもの 溶媒は、Chl c についてはアセトン-1%ピリジン^{7,8}、その他の Chl についてはジエチルエーテルを用いている^{78,14,15}。

2. 液体窒素温度における細胞中での吸収スペクトル

溶液中(図3)とは異なり、色素タンパク質複合体 中では Chl の吸収スペクトルは様々な波長でピークを 示し、Chl とタンパク質間の相互作用や、Chl 間の相互 作用により、Chl の電子遷移エネルギーが幅広く変化 することを意味している。液体窒素温度下で測定を行 うことによってスペクトルは尖鋭化され、Chl の遷移 エネルギーを詳細に調べることができる。Chl aのQ_v 帯に着目する (図 4) と Synechocystis sp. PCC 6803、 Anabaena variabilis , Arthrospira platensis , Halomicronema hongdechloris のいずれも、680 nm 近辺 に大きなピークを示す。680 nm 近辺のピークはいく つかの細かいピークに分かれていることが確認され、 エネルギーの異なる Chl a が存在することがわかる。 これに加えて、700 nmよりも長波長側にも吸収が確認 される。Synechocystis sp. PCC 6803 では明らかなピー クとしては観測されないが、A. variabilis、A. platensis、 白色光で培養された H. hongdechloris では 710 nm 近辺 にピークが確認される。これは、光化学系 I に存在す る低エネルギークロロフィル (PSI red Chl) に帰属さ れる。A. platensis、白色光で培養された H. hongdechloris では、弱いながらもさらに長波長側に吸収が観測され る。これらの Chl a による長波長光の吸収帯は、Chl d 型シアノバクテリア Acaryochloris marina の吸収帯 (ピ ーク波長を 711 nm とし、いくつかの細かいピークが 存在)に匹敵する波長領域である。ただし、Chlaしか 持たない A. platensis は、遠赤光 LED 下では細胞の増 殖が極めて遅い¹⁹⁾。H. hongdechloris は、遠赤光 LED 下で培養すると10%程度のChlfを持つことにより700 nm より長波長側の吸収帯が強くなり、遠赤光を吸収 し光合成に利用するの。

Chl b や Chl c は、Chl a の Q_y(1,0)帯や Q_x(0,0)帯の影響で細かいピークの変化を議論することは難しいこ とが多いが、DV-Chl b の相対含有量が大きい *Prochlorococcus* CCMP 2773 では、650.0 nm と 657.5 nm にピークを持つ、異なる遷移エネルギーを持った DV-Chl b が確認されている²⁰⁾。

3. 液体窒素温度における細胞中での定常・時間分解蛍光スペクトル

液体窒素温度下で蛍光スペクトルを観測すること

図 4 液体窒素温度(77 K)におけるシアノバクテ リア細胞の吸収スペクトル

Chl Qy 帯で強度を規格化している。上から、 Synechocystis sp. PCC 6803、Anabaena variabilis、 Arthrospira platensis、Halomicronema hongdechloris(水 色は白色光で培養した細胞、茶色は遠赤光で培養した 細胞)、Acaryochloris marina。点線は左から、680 nm と 710nm を示している。 により、個々の色素タンパク質複合体が持つ最もエネ ルギーの低い Chl を検討することができる。したがっ て、吸収スペクトルでは検出できないような、わずか に存在する低エネルギーChl の検出が可能である。さ らに、時間分解蛍光スペクトルでは、定常測定では観 測されないような、短い時間だけ蛍光を発する Chl に ついても検出が可能である。

Chl a 由来で最も長波長の蛍光ピークを発するのは、 シアノバクテリア A. platensis の光化学系 I 三量体に存 在する red Chl であり (758 nm)、定常測定でも時間 分解測定でも観測が可能である^{19,21)}。Chl d を主要 Chl として持つ Acaryochloris では、光化学系 I からの蛍光 が弱い。A. marina 細胞では、励起波長を変えて測定し た定常蛍光の差スペクトルを求めることにより、光化 学系 I の Chl d が 760 nm にピークを発することがわか る²²⁾。また、Acaryochloris 淡路株では、パルスレーザ 一励起後 100 ピコ秒経過した時間帯に、778 nm 近辺に 光化学系 I の Chl d からの蛍光が確認できる²²⁾。Chl a や Chl d が発する長波長蛍光はいずれもスペクトルが ブロードであり、Chl 分子間で強く相互作用をした Chl からの蛍光であると予想される。

遠赤光 LED で培養された H. hongdechloris の細胞で は Chl f 由来の蛍光ピークが 748 nm に観測される²³⁾。 この Chl f 蛍光は、高エネルギーの Chl a や Chl d が発 する蛍光のようにスペクトル形状が鋭く、Chl 間相互 作用ではなく Chl f 分子が持つ性質(図 3) をそのまま 反映していると思われる。タンパク質中で Chl f 分子同 士が強く相互作用したとき、どれくらい低い遷移エネ ルギーを持つことができるのか(どれくらい長波長の 光と相互作用できるのか)興味深い。

4. エネルギー移動

現在発見されている酸素発生型光合成生物は、すべ て、Chl a または DV-Chl a を持つ。したがって、(DV-)Chl a と他の Chl との間の励起エネルギー移動過程の観測 は、光合成初期過程の解明において重要な意味を持つ。 フェルスター型のエネルギー移動を考えると、エネル ギー移動効率を上げるためには、エネルギードナーの 蛍光スペクトルとエネルギーアクセプターの吸収ス ペクトルが十分に重なる必要がある¹³⁾。したがって、 Chl a へのエネルギー移動の効率を考えると、Chl a よ りも遷移エネルギーの高い Chl b や Chl c (図 3) が有 利である。実際、近接する Chl b から Chl a 間でのエネ ルギー移動¹⁷⁾や Chl c から Chl a 間エネルギー移動¹⁸⁾ は1ピコ秒より短い時定数で起こり、エネルギー移動 効率は極めて高い。DV-Chl b から DV-Chl a へのエネ ルギー移動についても、Chl b から Chl a へのエネルギ ー移動と同様、超高速過程である²⁰⁾。

Chl *d* や Chl *f* は Chl *a* よりも遷移エネルギーが低い (図 3)。しかし、室温では、*A. marina* 中で Chl *d* から Chl *a* へのアップヒルエネルギー移動が起こること²⁴⁾、 遠赤光 LED で培養された *H. hongdechloris* 中で Chl *f* と Chl *a* との間でエネルギー分布の平衡が 5 ピコ秒程 度で起こること²⁵⁾が報告されており、生育環境温度下 では、Chl *d* や Chl *f* で吸収された光エネルギーが Chl *a* へと伝達され利用することができることが示唆された。

5. おわりに

反応中心で起こる光誘起電子移動に寄与する Chl は、 Chla、Chld、DV-Chlaである。これらのChlでは吸 収できない(しにくい)波長の光を光合成に利用する ためには、異なる Chl を利用することになる。光エネ ルギー捕集と励起エネルギー移動の観点から各 Chl の 特徴を挙げると、次のようにまとめられる。(DV-)Chl b のQ_v帯は(DV-)ChlaのQ_v帯よりわずかにエネルギー が高く、(DV-)Chlaに対して良いエネルギードナーと なる。DV-Chlbは青色領域で最も長波長の光を吸収で きる Chl である。 Chl c は Q 帯のモル吸光係数が小さ いが、Chlaへのエネルギー移動効率は、ChlbからChl aへのエネルギー移動効率に匹敵する。また、Chl cの Soret 帯のモル吸光係数の値は Chl の中で最も大きく、 青色を吸収するのに有利である。 $Chl d や Chl f O O_{v}$ 帯は Chl a の Qy帯よりもエネルギーが低いが、色素タ ンパク質複合体中で Chl a と近接して存在することに より、 $Chl d \ge Chl a \ge O間$ 、 $Chl f \ge Chl a \ge O間$ で 励起エネルギーの平衡が成り立ち、生育温度では、Chl d や Chl f が捕集した光エネルギーを Chl a が利用でき ると考えられる。

最近、遺伝子導入により *A. marina* に合成させた新 奇な Chl ([7-formyl]-Chl *d*、すなわち、図 1 において、 C の位置にフォルミル基(O=CH-)が導入された Chl *d*) が、実際にアンテナ色素として機能していることが報 告されている^{26,27)}。 [7-formyl]-Chl *d* の Soret 帯および Q_v帯の吸収ピークは、アセトン中で、それぞれ、470 nm と 667 nm²⁶⁾である。Chl により吸収する光の波長領域 を人工的に拡張することができる可能性や、既知の Chl とは異なる波長領域の光を利用できる未知のChl が存在する可能性があることを示している。

謝辞

本稿では、神戸大学近藤昭彦教授、神戸大学村上明 男准教授、神戸大学藍川晋平博士、京都大学三室守教 授、シドニー大学 Min Chen 教授、ロシア科学アカデ ミーSuleyman I. Allakhverdiev 教授との共同研究により 得られた結果を用いた。御礼申し上げたい。

Received March 2, 2015; Accepted March 4, 2015

参考文献

- Tswett, M. (1906) Adsorptionsanalyse und chromatographische Methode. Anwendung auf die Chemie des Chlorophylls. *Ber. Dtsch. Botan. Ges.* 24, 384–393.
- Chisholm, S.W., Olson, R.J., Zettler, E.R., Goericke, R., Waterbury, J.B., and Welschmeyer, N.A. (1988) A novel free-living prochlorophyte abundant in the oceanic zone. *Nature* 340–343.
- Strain, H.H., and Manning, W.M. (1942) Chlorofucine (Chlorophyll g), a green pigment of diatoms and brown algae. *J. Biol. Chem.* 144, 625– 636.
- Miyashita, H., Ikemoto, H., Kurano, N., Adachi, K., Chilara, M., and Miyachi, S. (1996) Chlorophyll *d* as a major pigment. *Nature* 383, 402.
- Murakami, A., Miyashita, H., Iseki, M., Adachi, K., and Mimuro, M. (2006) Chlorophyll *d* in an epiphytic cyanobacterium of red algae. *Science* 303, 1633.
- Chen, M., Schliep, M., Willows, R.D., Cai, Z.-L., Neilan, B.A., and Scheer H. (2010) A red-shifted chlorophyll. *Science* 329, 1318–1319.
- 垣谷俊昭, 三室守, 民秋均 (2011) クロロフィル, 裳華房.
- 8. 日本光合成研究会編 (2003) 光合成事典, 学会出版センター.
- Blankenship, R. E. (2002) Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford.

Blankenship, R.E. (2014) *Molecular mechanism of photosynthesis, 2nd edition*, Wiley Blackwell.

- Zapata, M., Garrido, J.L., and Jeffrey, S.W. (2006) Chlorophyll *c* pigments: current status, in *Chlorophylls and bacteriochlorophylls* (Grim, B., Porra, R.J., Rüdiger, W., Scheer, H., Eds.) pp 39–53, Springer, Dordrecht, The Netherlands.
- Björn, L.O., Papageorgiou, G.C., Blankenship, R.E., and Govindjee (2009) A viewpoint: Why chlorophyll a? Photosynth. Res. 99, 85–98.
- Senge, M.O., Ryan, A.A., Letchford, K.A., MacGowan, S.A., and Mielke, T. (2014) Chlorophylls, symmetry, chirality, and photosynthesis. *Symmetry* 6, 781–843.
- 13. Förster, T. (1948) Intermolecular energy migration and fluorescence. *Ann. Phys.* 437, 55–75.
- Shedbalkar, V.B., and Rebeiz, C.A. (1992) Chloroplast biogenesis: determination of the molar extinction coefficients of divinyl chlorophyll *a* and *b* and their pheophytins. *Anal. Biochem.* 207, 261–266.
- Li, Y., Scales, N., Blankenship, R.E., Willows, R.D., and Chen, M. (2012) Extinction coefficient for red-shifted chlorophylls: Chlorophyll *d* and chlorophyll *f. Biochim. Biophys. Acta* 1817, 1292– 1298.
- Tomo, T., Akimoto., S., Ito, H., Tsuchiya, T., Fukuya, M., Tanaka, A., and Mimuro, M. (2009) Replacement of chlorophyll with di-vinyl chlorophyll in the antenna and reaction center complexes of the cyanobacterium *Synechocystis* sp. PCC 6803: characterization of spectral and photochemical properties. *Biochim. Biophys. Acta* 1787, 191–200.
- Akimoto, S., Yamazaki, I., Murakami, A., Takaichi, S., and Mimuro, M. (2004) Ultrafast excitation relaxation dynamics and energy transfer in the siphonaxanthin-containing green alga *Codium fragile*. *Chem. Phys. Lett.* 390, 45–49.
- Akimoto, S., Teshigahara, A., Yokono, M, Mimuro, M., Nagao, R., and Tomo, T. (2014) Excitation relaxation dynamics and energy transfer in fucoxanthin–chlorophyll *a/c*-protein complexes, probed by time-resolved fluorescence. *Biochim.*

Biophys. Acta, 1837, 1514-1521.

- Akimoto, S., Yokono, M., Hamada, F., Teshigahara, A., Aikawa, S., and Kondo, A. (2012) Adaptation of light-harvesting systems of *Arthrospira platensis* to light conditions, probed by time-resolved fluorescence spectroscopy. *Biochim. Biophys. Acta* 1817, 1483– 1489.
- Mimuro, M., Murakami, A., Tomo, T., Tsuchiya, T., Watabe, K., Yokono, M., and Akimoto, S. (2011) Molecular environments of divinyl chlorophylls in *Prochlorococcus* and *Synechocystis*: Differences in fluorescence properties with chlorophyll replacement. *Biochim. Biophys. Acta* 1807, 471–481.
- Shubin, V.V., Murthy, S.D.S., Karapetyan, N.V., and Mohanty, P. (1991) Origin of the 77 K variable fluorescence at 758 nm in the cyanobacterium *Spirulina platensis. Biochim. Biophys. Acta* 1060, 28– 36.
- Akimoto, S., Murakami, A., Yokono, M., Koyama, K., Tsuchiya, T. Miyashita, H., Yamazaki, I., and Mimuro, M. (2006) Fluorescence properties of the chlorophyll *d*-dominated cyanobacterium *Acaryochloris* sp. strain Awaji. *J. Photochem. Photobiol. A* 178,122–129.
- Tomo, T., Shinoda, T., Chen, M., Allakhverdiev, S.I., and Akimoto, S. (2014) Energy transfer processes in chlorophyll *f*-containing cyanobacteria using time-resolved fluorescence spectroscopy on intact

cells. Biochim. Biophys. Acta 1837, 1484-1489.

- Mimuro, M., Hirayama, K., Uezono, K., Miyashita, H., and Miyachi, S. (2000) Uphill energy transfer in a chlorophyll *d*-dominating oxygenic photosynthetic prokaryote. *Acaryochloris marina. Biochim Biophys Acta* 1456, 27–34.
- Akimoto, S., Shinoda, T., Chen, M., Allakhverdiev, S.I., and Tomo, T. (2014) Energy transfer in the chlorophyll *f*-containing cyanobacterium, *Halomicronema hongdechloris*, analyzed by time-resolved fluorescence spectroscopies. *Photosynth. Res.*, in press.
- 26. Tsuchiya, T., Mizoguchi, T., Akimoto, S., Tomo, T., Tamiaki, H., and Mimuro, M. (2012) Metabolic engineering of the chlorophyll *d*-dominated cyanobacterium *Acaryochloris marina*: production of a novel chlorophyll species by the introduction of the chlorophyllide *a* oxygenase gene. *Plant Cell Physiol.* 53, 518–527.
- Tsuchiya, T., Akimoto, S., Mizoguchi, T., Watabe, K., Kindo, H., Tomo, T., Tamiaki, H., and Mimuro, M. (2012) Artificially produced [7-formyl]-chlorophyll *d* functions as an antenna pigment in the photosystem II isolated from the chlorophyllide *a* oxygenaseexpressing *Acaryochloris marina*. *Biochim. Biophys. Acta 1817*, 1285–1291.

Diversity of Light Harvesting by Chlorophylls

Seiji Akimoto¹ and Tatsuya Tomo²

¹Molecular Photoscience Research Center, Kobe University, ²Faculty of Science, Tokyo University of Science

解説

原形質流動による成長制御から考える植物の光戦略[‡]

¹早稲田大学 教育・総合科学学術院 生物学専修,²JST さきがけ 富永 基樹^{1,2,*}

藻類から高等植物に至るあらゆる植物の細胞内では、原形質流動とよばれる活発な細胞内輸送が発生 している。原形質流動は、細胞小器官に結合したモータータンパク質ミオシン XI が、アクチン繊維上 を運動することによって発生している。しかしながら植物における本質的な役割に関しては、200 年以 上前の発見以来の大きな謎である。筆者らは、シロイヌナズナミオシン XI のモータードメインを、生 物界最速のシャジクモミオシン XI あるいはヒトミオシン V と分子生物学的に置換することで、人工的 な高速型あるいは低速型キメラミオシン XI を開発した。驚くべきことに、高速型・低速型キメラミオ シン XI を発現させたシロイヌナズナでは、それぞれ原形質流動の高速化・低速化を伴い、植物が大型 化・小型化することが明らかとなった。このことから原形質流動が、植物サイズの決定因子の一つで あることが示された。本結果を踏まえ、これまで交わることの少なかった原形質流動と光合成の関係 に関して想像を交えつつ議論したい。

1. はじめに

動物は、運動することによって自身の生存に適し た環境へと随意に移動することができる。一方、陸上 植物は基本的に一度根を下ろした場所から生涯動く ことが出来ない。植物は、ソーラーパネルである葉を 展開し、太陽光を光合成によって化学エネルギーへと 変換し、最終的に子孫を残すために重要な花器官にエ ネルギーを送る、一つの装置だともいえる。根ざした 環境下で装置を展開する植物にとって、周辺環境を検 知し、それに見合った大きさや形に成長する仕組みは 不可欠である。そのため植物は、動物にはない様々な 環境応答機構を発達させてきた。一見動かない植物で あるが、細胞の中を顕微鏡でのぞくと、"原形質流動" と呼ばれる動物に比べて非常に活発な細胞内輸送が 行われている。原形質流動は、あらゆる植物(藻類か ら高等植物まで)の細胞でみられる現象であることか ら、植物にとって不可欠かつプリミティブなシステム だと考えられる。原形質流動は今から 200 年以上前、 1774 年にイタリアの顕微鏡学者 Bonaventura Corti によ り、シャジクモの節間細胞において初めて見出された

¹⁾。20世紀に入って、神谷宣郎先生(筆者は孫弟子に あたる)らによって、原形質流動は原形質のゾル=ゲ ル界面での能動的な滑りによって発生すると考える "滑り説"が提唱された²⁾。その後、原形質流動は細胞 小器官に結合した植物特異的なミオシン(クラス XI) がアクチン細胞骨格上を ATP の加水分解エネルギー を使って、方向性を持って滑り運動することにより発 生することが明らかとなった^{3,4)}。(図 1、実はどうい った細胞小器官にミオシン XI が結合しているのかは 今もって明らかになっていない)。

成長した植物細胞では液胞が細胞体積の90%以上を 占め、その中には様々なタンパク質分解酵素が含まれ る。それ故、ミオシン XI のように、発現量が少なく、 分子サイズの大きな機能性タンパク質(~170kDa)を、 活性を保ったまま生化学的に単離精製することが非 常に難しく、長らく分子レベルでの研究は進んでいな かった。近年筆者は、タバコ培養細胞から生化学的に 単離精製したミオシン XI の研究によって、1 分子レベ ルでの形態や運動メカニズムを明らかにすることに 成功した。ローターリーシャドウイングによる電子顕 微鏡観察から、タバコミオシン XI は 2 量体で 2 つの モータードメインを持ち、さらに 6 つの IQ モチーフ に軽鎖が結合した長いネック領域を持つことが明ら

^{*}解説特集「光合成の多様な世界について」

^{*}連絡先 E-mail: motominaga@waseda.jp

かとなった(図1)。分子形態的には、動物で細胞内輸 送を担っているミオシンVと類似していることが示さ れた。さらに、ミオシン XI を結合させたビーズを光 ピンセットで補足し、アクチン上を運動させることに より、ミオシン1分子の運動をナノメートルレベルで 検出することに成功した。タバコミオシン XI は、2つ のモータードメインをアクチン上で交互に結合・解離 させることによって、35 nmの歩幅であたかも人が歩 くように長距離移動できる高速型(~7 µm s⁻¹)のプロ セッシブモーターであることが明らかとなった。この 高速運動は、モータードメイン (エンジン) における 高い ATP 分解活性によって発生し、形態的に同タイプ の動物ミオシン V よりも 10 倍速い速度を発生できる ことが分かった 5-8)。分子レベルでの運動メカニズムは ようやく明らかになってきたのだが、そもそも原形質 流動の役割とは何か?本質的な機能に関しては、200 年以上前の発見以来、今日に至るまで大きな謎として 残っていた。

図1 原形質流動の発生メカニズム

原形質流動は、アクチン繊維上を、細胞小器官に結合したモータータンパク質ミオシン XI が運動することによって発生している。

例えば、淡水産藻類シャジクモ(陸上植物の先祖) の原形質流動は 50~100 μm s⁻¹に達し、高等植物の原 形質流動速度 (5~20 μm s⁻¹) のさらに 10 倍以上速い。 シャジクモミオシン XI のモータードメインを昆虫細 胞で発現・精製し、*In vitro* motility assay(ガラス表面 にミオシンを結合させ、ATP 存在下で蛍光ラベルした アクチンを滑り運動させる)により運動速度を測定し たところ、シャジクモの原形質流動速度と一致する 50 ~70 μm s⁻¹を発生している事が見積もられ、生物界最 速のモータータンパク質であることが明らかとなっ た⁹。この超高速運動は、モータードメインにおける 非常に高い ATP 分解活性と、アクチンミオシン複合体 からの速い ADP 解離に依存している^{10,11)}。シャジクモ の節間細胞は非常に大きく成長して 10 センチ以上に 達することから、細胞内における、栄養や代謝産物、 細胞壁前駆体、二酸化炭素あるいは植物ホルモンなど の拡散に速い原形質流動が不可欠だと推測されてい る¹²⁾。さらに、モデル植物シロイヌナズナにおいて、 原形質流動の駆動力となっているミオシン XI を多重 ノックアウトすると、原形質流動速度の低下に伴い、 植物の成長が抑制される⁷⁾。以上のことから、原形質 流動が植物の成長に密接に関係していることが推測 される。近年、ミオシン XI の細胞内機能を解析する ために、シロイヌナズナやタバコにおいて、ノックア ウトや RNAi あるいはドミナントネガティブの過剰発 現といった手法が盛んに用いられている。しかしなが ら従来の分子生物学的手法のみでは、原形質流動と植 物成長との関係性を直接的に証明することはできな かった。原形質流動の本質的機能に迫れる新しい解析 システムはないのかと筆者らは考えた。

2. ミオシン XI の人工的速度改変

筆者らは、ミオシンの速度を規定しているモーター ドメインに、人工的速度改変(高速化・低速化)を施 し、植物で発現させ、植物高次レベルでの影響を見る ことでミオシン速度(原形質流動速度)の意義を明ら かにしようと考えた。シロイヌナズナのミオシン XI には 13 種類ものアイソフォームが存在する(藻類や コケが数種類しか持たないことから、植物機能の高度 化に伴いミオシン分子種も多様化したものと思われ る)。この中で、原形質流動の主要な駆動力の一つと 目されるミオシン XI-2 (運動速度約7 um s⁻¹)のモー タードメインを、先ほど登場した生物界最速シャジク モミオシン XI (推定運動速度約 50 um s⁻¹)、あるいは ヒトミオシン V (運動速度約 0.2 µm s⁻¹)のモータード メインと分子生物学的に置換することによって、人工 的な速度改変型キメラミオシン(高速型・低速型)を 開発した(図2)。ミオシンのボディーに当たる部分は シロイヌナズナ由来で、モータードメイン (エンジン) のみを置換することで、ネック領域における軽鎖やテ イル領域におけるオルガネラ結合能を保持したまま、 アクチン上での運動速度のみを変化させることが期 待できる。

図2 速度改変型キメラミオシン XI

(A) シャジクモミオシン XI。(B) ヒトミオシン Vb。(C) 野生型ミオシン XI (シロイヌナズナミオシン XI-2)。(D) 高速型ミオシン XI (シャジクモーシロイヌナズナキメラミオシン XI-2)。(E) 低速型ミオシン XI (ヒトーシロイヌナズナキメ ラミオシン XI-2)の模式図。ネックおよびテイル領域はシロイヌナズナミオシン XI-2 由来であるため、シロイヌナズナ内での軽鎖やオルガネラ結合能を保持したまま、運動速度のみを変化させることができる。

開発したキメラミオシンで期待された速度変化が 得られているのか? In vitro、In vivo 両面からの検証を 行った。まず、速度改変型ミオシン XI-2 を昆虫細胞で 発現・精製し、In vitro motility assay により運動速度を 評価した。その結果、野生型ミオシン XI-2 (7.2±0.5 μm s⁻¹) に対して、高速型ミオシン XI-2 は約2 倍の高 速化 (16.0±0.9 µm s⁻¹)、低速型ミオシン XI-2 は 1/35 の低速化 $(0.19 \pm 0.02 \,\mu\text{m s}^{-1})$ が明らかとなった。高速 型キメラによる高速化が2倍程度で、本来のシャジク モミオシン XI が持つ運動速度に達していないのは、 異種間ミオシンの融合による構造的不具合の可能性 が考えられる。そのため現在、更なる高速化に向けた 分子設計の見直しを行っている。次に、蛍光タンパク 質 GFP を融合した野生型あるいは速度改変型ミオシ ン XI-2 を、シロイヌナズナ培養細胞で一過的に発現さ せ、in vivo における速度性能を評価した。野生型のみ ならず高速型・低速型ミオシン XI-2 共に、同様の膜状

のオルガネラに局在していたことから、特異的なオル ガネラ結合能が保持されていることが示された。また、 オルガネラの運動速度は、野生型に対し、高速型では 増加、低速型では低下していることが明らかとなった。

3. 植物への影響

In vitro、 In vivo 共に高速化・低速化が確認された 速度改変型ミオシン XI-2 を、シロイヌナズナで発現さ せることによって植物の高次構造(成長や形態形成) に及ぼす影響を解析した。速度改変型ミオシン XI-2 を、内在性の野生型ミオシン XI-2 をノックアウトした シロイヌナズナ植物体(ミオシン XI-2 シングルノック アウト株の成長や形態は野生株と変わらない)で native promoter により発現させた。その結果、高速型 ミオシン XI-2 を発現させた株では植物が大型化、低速 型ミオシン XI-2 を発現させた株では植物が小型化す ることが明らかとなった(図 3)。

図3 速度改変型キメラミオシン発現株

(左)野生株。(中央)高速型発現株。(右)低速型発現 株。

この時、地上部における乾燥重量は、野生株に対し、 高速型発現株では約 40% 増加、低速型発現株では約 20%低下していた。植物サイズ変化の要因が"細胞数の 変化"あるいは"細胞サイズの変化"によるのかを明ら かにするため、葉肉細胞(第1本葉)のサイズ解析を 行った。その結果、高速型発現株では、細胞面積が約 50% 増大し、低速型発現株では約30%減少していた。 葉当たりの細胞数は変わらなかったことから、大型 化・小型化の要因は、主に細胞サイズの増加・減少で あることが示された。また、葉肉細胞と共に顕著なサ イズ変化がみられた葉柄表皮細胞の原形質流動を観 察することで、流動速度への影響を評価した。野生株 (Columbia)では、方向性を持った活発な原形質流動 $(4.3 \pm 1.0 \,\mu\text{m s}^{-1})$ が観察された。一方、ミオシン XI-2 のノックアウト株では流速が阻害され、野生株の 1/4 (1.0±0.3 μm s⁻¹) であった。葉柄表皮細胞における原 形質流動には、他の内在性ミオシン XI も関与するが ミオシン XI-2 の寄与が大きいと考えられる。この XI-2 ノックアウト株に、野生型ミオシン XI-2 を発現させた 植物では、原形質流動が野生株レベルまで回復した (4.5±1.0 μm s⁻¹)。一方、低速型ミオシン XI-2 を発現 する植物では、方向性を持った原形質流動はほとんど 見られなかった。低速型がロードとなり、他の内在性 ミオシン XI の運動も阻害していると考えられる。最 後に、高速型ミオシン XI-2 を発現する植物では、野生 株や野生型ミオシンを入れた植物に比べて、原形質流 動速度が約1.5~2倍速くなっていた(7.5±1.2 µm s⁻¹)。 原形質流動は一般的に、小さい細胞よりも大きな細胞 において流速が速くなることが知られている。これは、 細胞の成長に伴い、ランダムだったアクチン繊維の配

向が細胞伸長方向に整列し、軌道が安定するためだと 考えられる。今回の結果は、「細胞サイズが大きくな った結果、流速が上がった」という解釈も可能かもし れない。ただ、原形質流動速度はミオシン速度の Vmax に規定されるため、ある程度細胞が成長すれば、流動 速度も Plateau に達する(ミオシン速度以上の流速は出 ない)。今回、1) 流速の測定は、発芽 20 日前後の成 長した第1本葉の葉柄表皮細胞で行ったこと、2)高 速型発現株では野生株で観察される maximal velocity より速い流速が発生していたこと、3)サイズがそろ った培養細胞においても、細胞内運動速度が野生型に 対し高速型が増加していたこと、これらの点を考慮す ると、「細胞サイズの増加に起因した流速の上昇」で はなく「ミオシン高速化による流速の上昇に起因した 細胞サイズの増加」と考えるのが妥当ではないかと思 われる。以上の結果より、原形質流動速度(ミオシン 速度)と植物サイズ(細胞サイズ)に比例的な相関が 示されたことから、原形質流動が植物サイズを規定す る重要な因子であることが明らかとなった¹³⁾。

4. 犯人は誰だ?

原形質流動が植物サイズを規定する因子であるこ とは分かった。では、原形質流動は何を運ぶことによ って植物の大きさを規定しているのか?原因物質(犯 人)は特定できていない。原形質流動は文字通り、原 形質全体の流動であることから、原形質中に含まれる あらゆる成長関連因子(栄養や代謝産物、植物ホルモ ン、細胞壁前駆体、二酸化炭素などなど)が容疑者と して挙げられる。また、犯人は単独犯であるかもしれ ないし複数犯の可能性もある。捜査が難航する中、プ レリミナルではあるが手がかりと思われる現象が見 つかってきた。それは湿度60%を境に、湿度が高いほ どキメラの大型化・小型化が共に顕著に現れることで ある。どうやら犯人は湿度に関連した因子であること が示唆される。植物において一般的に湿度が高いほど、 気孔の開度が大きくなる。気孔開度が大きい時、すな わち植物内の二酸化炭素濃度が高い時に、サイズ変化 が顕著であるということから、細胞内あるいは細胞間 の二酸化炭素輸送に原形質流動速度が効いている可 能性が考えられる。光合成の専門誌で説明するのは恐 縮であるが、気孔は、光合成に必要な唯一の二酸化炭 素取り込み口である。したがって、気孔の抵抗値(開

図 4 葉肉内における原形質流動を介した二酸化炭素 の輸送(仮説)

度)は光合成速度にとって重要な因子であり二酸化炭 素取り込みの第一の律速となっている。未発表データ であるが、速度改変型ミオシン XI-2 発現株において、 気孔の大きさや開度は野生株とほとんど差が見られ なかった。従って、第一の律速である気孔抵抗への関 与は少ないと考えられる。第二の律速である葉肉抵抗 は、気孔以降葉緑体に至るまでのすべての組織体の抵 抗を一括したものである。湿度に対する感受性および 二酸化炭素が葉緑体に届くまでには必ずどこかでシ ンプラスト経路を通らなければならないという事か ら考えて、原形質流動が葉肉抵抗を規定する律速とな っているのではないかと想像しつつ現在研究を進め ている(図4)。

5. おわりに

生物界一速いミオシンを持つシャジクモ類は、分子 系統学的解析から陸上植物の祖先だということが示 唆されている。淡水産藻類であるシャジクモは、重力 の影響の少ない水中で細胞を大きくすることによっ て高く成長した。大きく成長した細胞内における十分 な物質循環を確保するために、シャジクモミオシン XI のような非常に速いミオシンを進化させる必要があ ったと予想される。おそらく、ミオシン XI の高速化 に伴う ATP 消費よりも、細胞を大きくする選択のほう がエネルギー的に有利だったのだろう。一方、陸上に 進出した植物は、小さい細胞を層状に積み重ねること によって、高さを確保した。そうすることで、重力の みならず風、雨など、水中には無い物理的外力に対す る剛性を獲得したのではないかと考えられる。この過 程で、ミオシン XI の速度は小さい細胞サイズに最適 化し遅くなったと考えられる。高速型ミオシン XI の 発現は、いわば進化の逆行であり、それにより陸上で も植物が大型化することが明らかとなった。この人工 的な大型化は、雨、風など物理的外圧の少ない実験室 レベルでは有利かもしれないが、野生環境においては 倒れやすくなるなど必ずしも有利に働くとは限らな い。したがって逆の解釈も可能である。すなわち、陸 上植物は本来のサイズよりも大きく育つポテンシャ ルがあるのだが、原形質流動速度によって、植物がそ れぞれの生育環境に適した大きさに規定されている のではないかという仮説である。現状では想像の域を 出ないが、植物は、原形質流動によって二酸化炭素の 葉緑体への供給量を時間・空間的にコントロールする ことで自身の大きさを制御しているという可能性は 考えられないだろうか?また逆に、カナダモやオオセ キショウモにおいて光合成が原形質流動に影響を与 えるという知見が報告されている^{14,15)}。おそらく、原 形質流動と光合成には密接な関係があり、お互いの活 性をうまくコントロール仕合うことで、植物の成長や 形態形成を制御しているのではないかと想像してい る。本稿を機に、これまで接点が少なかった光合成の 専門家の方々と議論いただける機会が持てれば幸い である。

謝辞

共同研究者の伊藤光二先生、中野明彦先生、新免輝 男先生、山本啓一先生、横田悦男先生、原口武士博士、 木村篤司さんにお礼を申し上げます。また、研究費を 助成していただいた文部科学省および科学技術振興 機構に深く感謝いたします。

最後に日本光合成学会のシンポジウム「多様な光合 成の世界」での講演と本執筆の機会を与えてください ました、鞆達也先生(東京理科大学)、園池公毅先生 (早稲田大学)に感謝いたします。

Received March 6, 2015; Accepted March 20, 2015

参考文献

- Corti, B. (1774) Osservazioni microscopiche sulla tremella e sulla circolazione del fluido in una pianta acquajuola. Lucca.
- Kamiya, N. and Kuroda, K. (1956) Velocity distribution of the protoplasmic streaming in *Nitella* cells. *Bot. Mag. Tokyo* 69, 544–554
- Shimmen, T. and Yokota, E. (2004) Cytoplasmic streaming in plants. *Curr. Opin. Cell Biol.* 16, 68– 72.
- Yamamoto, K., Shimada. K., Ito, K., Hamada, S., Ishijima, A., Tsuchiya, T. and Tazawa, M. (2006) *Chara* myosin and the energy of cytoplasmic streaming. *Plant Cell Physiol.* 47, 1427–1431.
- Tominaga, M., Kojima, H., Yokota, E., Orii, H., Nakamori, R., Katayama, E., Anson, M., Shimmen, T. and Oiwa K. (2003) Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. *EMBO J.* 22, 1263–1272.
- Tominaga, M., Kojima, H., Yokota, E., Nakamori, R., Anson, M., Shimmen, T. and Oiwa, K. (2012) Calcium-induced mechanical change in the neck domain alters the activity of plant myosin XI. *J. Biol. Chem.* 287, 30711–30718.
- Tominaga, M. and Nakano, A. (2012) Plant-Specific Myosin XI, a Molecular Perspective. *Front. Plant Sci.* 3, 211.
- Diensthuber, R.P., Tominaga, M., Preller, M., Hartmann, F.K., Orii, H., Chizhov, I., Oiwa, K., Tsiavaliaris, G. (2015) Kinetic mechanism of *Nicotiana tabacum* myosin-11 defines a new type of a processive motor. *FASEB J.* 29, 81–94.
- 9. Ito, K., Kashiyama, T., Shimada, K., Yamaguchi, A.,

Awata, J., Hachikubo, Y., Manstein, D.J., and Yamamoto, K. (2003) Recombinant motor domain constructs of *Chara corallina* myosin display fast motility and high ATPase activity. *Biochem. Biophys. Res. Commun.* 312, 958–964.

- Ito, K., Ikebe, M., Kashiyama, T., Mogami, T., Kon, T., and Yamamoto, K. (2007) Kinetic mechanism of the fastest motor protein, *Chara* myosin. *J Biol Chem.* 282, 19534–19545.
- Ito, K., Yamaguchi, Y., Yanase, K., Ichikawa, Y., and Yamamoto, K. (2009) Unique charge distribution in surface loops confers high velocity on the fast motor protein *Chara* myosin. *Proc. Natl. Acad. Sci. U.S.A.* 106, 21585–21590.
- Verchot-Lubicz, J. and Goldstein, R.E. (2010) Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. *Protoplasma* 240, 99–107.
- Tominaga, M., Kimura, A., Yokota, E., Haraguchi, T., Shimmen, T., Yamamoto, K., Nakano, A., Ito, K., and Tominaga, M. (2013) Cytoplasmic streaming velocity as a plant size determinant. *Dev. Cell.* 27, 345–52.
- Seitz, K. (1964) Das Wirkungsspektrum der Photodinese beiElodea Canadensis. *Protoplasma* 58, 621–640.
- Takagi, S., Yamamoto, K. T., Masaki, F. and Nagai, R. (1990) Cooperative regulation of cytoplasmic streaming and Ca²⁺ fluxes by Pfr and photosynthesis in *Vallisneria* Mesophyll Cells. *Plant Physiol.* 94, 1702–1708.

Cytoplasmic Streaming and Photosynthesis

Motoki Tominaga*

Department of Biology, Faculty of Education and Integrated Arts and Science, Waseda University and JST, PRESTO

解説

自然界の多様性を生かした研究戦略:珪藻の世界[‡]

兵庫県立大学 大学院生命理学研究科

菓子野 康浩*

珪藻が地球上に出現したのは中生代で、比較的最近の出来事である。しかし、すでに10万以上の種が存在すると見られ、現代の地球上の一次生産の約四分の一を珪藻が担っていると推測されており、藻類の中では最も多様化と繁栄を果たしてきたと言える。珪藻は、地球上の多様な環境下で見出され、それらの環境下では、光合成生物にとって最も重要な環境因子である光の質・強度の相異も多様である。そのため、珪藻の自然環境に対する適応・馴化の戦略も多様である可能性がある。本稿では、珪藻の生息する環境の多様性を概観し、10万種以上もある中からほんの2例ではあるが、環境応答戦略の多様性の一端をうかがわせる事例を紹介する。

1. はじめに

言うまでもなく地球上には多種多様な環境が存在 し、生物の存在および活動は環境との関わり抜きに考 えることはできない。生物は、その生きている周りの 環境との対話を通して生命活動を営んでいる。その環 境には、物理化学的な環境、およびそのような環境と 生物との長い関わりで形成された環境とがある。後者 には、林床の光環境や生物活動によって形成された土 壌、大気組成等がある。物理化学的環境は、温度、湿 度、水、光など環境要素が多岐に亘り、さらにそれら の要素が複合して、ある環境が形成される。光合成生 物にとって最も重要な環境要因は光である。解放域で は光強度はいっぱんに強く、岩陰、洞窟、海の中など は光強度が小さくなる。また、海洋では海面からの深 度が大きくなるにつれて光強度が小さくなるととも に、クロロフィルの Qy バンドが吸収する赤色域の光 が減って相対的に青~緑の光が強くなる^{1,2)}という質 の変化も起こる。光合成生物にとって光合成反応のた めに光は必須であるが、強すぎる光は光阻害に繋がる。 また、同じ光強度でも、温度により各種の酵素反応の 速度が異なることを反映し、温度が低いと光阻害を起 こしやすくなる場合もある³⁾。このような各種環境要 素の総合としての局所環境に適応し、光合成生物は光

合成を行いつつ生命活動を営んでいるわけである。局 所環境への適応の結果、その局所環境と似た環境が広 範囲に広がると、その生物の生育可能域も広くなるこ とになる。

光合成を行うための光を獲得するために、光合成生 物は光環境に応じてその光環境に適した光捕集系を 獲得してきたと考えられる。光化学系反応中心はシア ノバクテリアから高等植物に至るまでほぼ同じ構造 をしているとみられるが、反応中心複合体でも調節に 関わると考えられるサブユニットや、光捕集色素タン パク質複合体にはバリエーションがある。そのバリエ ーションは、シアノバクテリア、紅藻、といった種類 ごとにある程度のまとまりを見ることができる。光合 成生物は、このように多様な種類の集合体である。光 合成研究を進めるにあたって、光合成生物の多様性が 環境の多様性と密接に関わっていることとあわせて 考えることで、光合成反応にとって必須の事項や、環 境に合わせて獲得され、光合成の効率を調節するため の装置についての本質についての理解も深めること ができると期待される。本稿では、地球上の多様な環 境に生きる珪藻を事例に、自然界の多様性と光合成に ついて概観する。

⁴解説特集「光合成の多様な世界について」

^{*}連絡先 E-mail: kashino@sci.u-hyogo.ac.jp

珪藻は他の多くの酸素発生型光合成生物が緑色系 の色を呈しているのとは異なり、褐色を呈する。いわ ゆる二次共生生物のひとつで、2 mm 程度の巨大珪藻 もいるが、多くは数 µm~数十 µm 程度の大きさの単細 胞性微細藻類である。その珪藻が地球上に出現したの は比較的最近で、約2億5千万年前の中生代である⁴⁾ (菊谷ら⁵⁾に解説がある)。珪藻は中心目と羽状目とに 分けられるが、まず中心目が出現し、中生代後期まで に中心目から羽状目が分かれたと考えられている⁴⁾。 比較的歴史の浅い生物群であるが、非常に多様化して おり、現在では1万から 10 万の種が存在するとされ る^{1,4)}。被子植物の種数には及ばないものの、紅藻の約 6、000種、褐藻の約1、500種、緑藻の約2、500種、 シアノバクテリアの約1、500種¹⁾に比べると、非常に 多い。種数に加え光合成生産高も高く、現在の人類に よって大量消費されている原油中のバイオマーカー の研究によると、原油の主要な生産者が珪藻であった と推定されている 6-9)。また現在我々人類が多量に利用 している珪藻土も珪藻の死骸の堆積物であり、おびた だしい量の珪藻が生息していた時代があったことが 分かる。そして現在では、一個体の大きさが 1mm に も満たない珪藻が、地球の年間光合成生産量の 20~ 25%を担っていると推計されている¹⁰⁾。これは、熱帯 雨林の光合成量¹¹⁾に匹敵するほどである。このような ことから、珪藻は藻類の中では最も多様化と繁栄を果 たしてきたと言える。

珪藻が光合成を行うための光捕集色素タンパク質 複合体は、フコキサンチン・クロロフィル結合タンパ ク質複合体 (FCP) である。アポタンパク質は、緑色 植物の光捕集色素タンパク質と同じく Lhc ファミリー に属し¹²⁾、その遺伝子の数はゲノムの解読された中心 目珪藻 *Thalassiosira pseudonana*¹³⁾で 33、羽状目珪藻 *Phaeodactylum tricornutum*¹⁴⁾で 40 である。これらは、 クラシカルな光捕集色素タンパク質 Lhcf、紅藻の LHCI に相同の Lhcr、強光保護に関与する可能性が指摘され ている Lhcx の3種類に分類される¹²⁾。光合成色素と しては、他の酸素発生型光合成生物と同様のクロロフ ィル a に加え、クロロフィル c とフコキサンチンが結 合しているという特徴がある(図 1-A)。ポルフィリン 骨格のクロロフィル c は、クロリンである他のクロロ フィルと異なり、Qy バンドの吸収が極めて小さい。光

図1 珪藻の光合成色素(A)と微細藻類細胞(B)の 吸収スペクトル

A は溶媒中のクロロフィルa(薄い緑)、クロロフィルc₁+c₂ (濃い緑)、フコキサンチンの吸収スペクトルを示し、そ れぞれの最大吸収波長で正規化してある。B は、培地中 での中心目珪藻 Chaetoceros gracilis (茶)、緑藻 Chlamydomonas reinhardtii (緑)、シアノバクテリア Synechocystis sp. PCC 6803 細胞の吸収スペクトルで、Qy バンドの最大吸収波長で正規化してある。

吸収特性に影響を与えないが、フィトールを持たない 点でも他のクロロフィルと異なる。クロロフィルcは c1、c2、c3が主要なものであるが、珪藻にはクロロフ イル c1、c2 が含まれる。クロロフィル c3 は、ハプト藻 に見出される色素である。クロロフィル c1 と c2の構造 上の相異はごくわずかで(8位がエチル基かビニル基 か)、吸収スペクトルはよく似ており、また HPLC で の分離も容易ではない。細胞の色素分析等のために光 合成色素を溶媒で抽出すると、これらの色素が混合し た状態では緑色に見える。しかし、これらの光合成色 素とタンパク質が結合した FCP 複合体は、色素とアポ タンパク質との相互作用により褐色を呈する。しかも、 反応中心複合体よりも多量に存在するため、反応中心 複合体の緑色を覆い隠してしまい、珪藻の細胞は独特 の茶褐色である。この特徴のため、シアノバクテリア や緑色植物に比較すると、緑色の領域の光を吸収する 能力が格段に高い(図1-B)。この特徴は、海洋での光

合成にとって好都合である。上述のように、水中では クロロフィルの Qy バンド領域の光が少なく、緑色の 領域の光が多い。緑色の光を吸収する特性を持つ珪藻 は、そのような光環境で有効に光を吸収することが可 能となる。クロロフィル a と補助色素の化学量論比は、 中心目珪藻 Chaetoceros gracilis では Chl a:Chl *c*:fucoxanthin=100:45:130¹⁵⁾、羽状目珪藻 *P. tricornutum* では Chl a:Chl c:fucoxanthin = 100:38:127¹⁶⁾と相互に近 い値が報告されているが、報告によって開きがある 17-20)。この値のばらつきが種によるものか、生育光環 境(強度や質)によるものかは、検証が必要である。 ただし、中心目珪藻 C. gracilis および羽状目珪藻 P. tricornutum では、生育光強度による細胞内光合成色素 組成の変化は非常に小さい²¹⁾ (図 2)。実験室における 単離株のみならず、オーストラリアと南極の間の南洋 の自然環境下²²⁾やサロマ湖の海氷に付着したアイス アルジー23)でも同様に、環境中の光強度による変化が 少ない傾向が観察されている。

FCP には、光捕集に関わる上記の光合成色素に加え、 キサントフィルサイクル色素も結合している²⁴⁻²⁶⁾。緑 色植物のキサントフィルサイクルは、ビオラキサンチ ンが強光環境下で酵素により脱エポキシ化されて、ア ンテラキサンチンへ、さらにゼアキサンチンへと変換 され、過剰な光を熱として放散し、過剰光環境下で光 化学系を保護する²⁷⁾ (図 3-A)。脱エポキシ化により共 役二重結合が増加するため、吸収スペクトルの長波長 側がより長波長へと延びる。過剰光環境が緩和される と、エポキシ化が進行し、ビオラキサンチンの形へと 変換される。珪藻のキサントフィルサイクルは、機能 的には相同であるが、よりシンプルにディアディノキ サンチン (エポキシ型) とディアトキサンチン (脱エ ポキシ型)の二つのキサントフィルサイクルで構成さ れ (図 3-B)、ディアディノキサンチンサイクルとも呼 ばれる。強光照射によりディアディンキサンチンは酵 素により迅速にディアトキサンチンに変換され、非光 化学的消光により過剰な光エネルギーを消散する24、 25)。これらの色素は、生育光強度が大きいと、プール サイズも大きくなる (図 2)²¹⁾。このような変化は、 実験室における単離株のみならず、南洋の自然環境下 22)でも同様の傾向が観察された。エポキシ基が一つの アンテラキサンチンとディアディノキサンチン、エポ キシ基のないゼアキサンチンとディアトキサンチン

図2 生育光強度の変化に応じた光合成色素組成の変化

各色素の量をクロロフィル a に対するモル比で示してあ る。A; Chaetoceros gracilis、B; Phaeodactylum tricornutum。 ロフコキサンチン、oクロロフィル c_1+c_2 、 Δ ディアディノ キサンチン+ディアトキサンチン、 \diamond B-カロテン。Ban ら ²¹⁾より許可を得て転載。

の溶媒中での吸収スペクトルはほぼ一致する(図3の A、Bを比較)。珪藻を含む黄色植物と緑色植物は進化 上異なる系統と見られるが、過剰な光環境下で光化学 系を保護するための仕組みとして異なるキサントフ ィル色素を進化の過程で採用したにもかかわらず、結 果的によく似た吸収スペクトルを持つ色素による、ほ ぼ似た仕組みになったことは、興味深い。ただし、ク ロロフィル c を補助色素として有する光合成生物は、 同じくディアディノキサンチンサイクルを有するが、 黄金色藻の Ochromonas smithii、O. itoi²⁸⁾や Giraudypsis stellifer²⁹⁾、褐藻の Pelvetia canaliculata や Laminaria saccharina³⁰⁾ではビオラキサンチンを軸としたキサン トフィルサイクルが主として機能している。したがっ て、これら二つのキサントフィルサイクルの起源は密 接に関連していると考えられており、さらにフコキサ ンチンの生合成にも繋がっていると考えられている 31)

図3 キサントフィルサイクル 緑色植物のキサントフィルサイクル (A)と黄色植物のディアディノキ サンチンサイクル (B)。

珪藻は、光合成産物をトリアシルグリセロール (TAG)の形で細胞内に蓄積する種類が多い。TAG は 通常、細胞内に油滴として蓄積される。珪藻の油脂蓄 積量は比較的大きい^{9,32)}。生育条件、生育ステージや 種によって細胞内蓄積量は異なるが、細胞の乾燥重量 当たり16~47%の油脂量が報告されている³²⁾。緑藻 *Botryococcus braunii*の最大 70~75%^{32,33)}には及ばない ものの、珪藻細胞重量の60%程度が珪酸の被殻³⁴⁾であ ることを勘案すると、珪藻の細胞内油脂蓄積量は非常 に大きいといえる。そのため、産業的利用可能性の面 から注目される存在でもある。

上述のように珪藻は、珪酸質の殻に包まれている。 種ごとにその文様が異なる。地球の炭素の循環に多大 な貢献をしている珪藻であるが、同時に地球上の珪素 の循環にも重要な役割を果たしている¹⁰⁾。珪酸質の堅 牢な被殻であるため、細胞を保護する効果が期待され るが、東南アジアでは養殖エビの餌として利用され、 日本でも稚貝・稚魚の餌として価値の高い珪藻も知ら れており、また、極洋の生態系を支える重要な一次生 産者でもあることから、捕食者から細胞を守る効果は 小さいのかもしれない。この固い珪酸質の殻が細胞の 大きさを規定するため、細胞分裂に伴って細胞の大き さは小さくなって行かざるを得ない。細胞の大きさを 回復するために、有性生殖が行われる。この珪酸質の 堅牢な被殻は、珪藻の光合成系の生化学的解析の妨げ になってきたと考えられる。この被殻を破壊して健全 なチラコイド膜を Cylindrotheca fusiformis から得るた めにフレンチプレスが用いられ報告されたのは 1998 年³⁵⁾のことである。我々の研究により C. gracilis から 凍結・融解により容易に健全なチラコイド膜を調製す ることができ³⁶⁾、珪藻の光化学系の詳細な解析が可能 となったが^{15,37)}、このような方法を適用することがで きる珪藻が一般的ではない。P. tricornutum や T. pseudonana からはガラスビーズを用いた手法によりチ ラコイド膜を健全に調製することができるようにな ったので(投稿準備中)、今後、各種の珪藻の光合成 系の生化学的解析が進むものと期待される。

3. 多様な珪藻

珪藻の生息域は広く、76度で生育する好熱性の珪 藻から、氷点下で生育する好冷性の珪藻も存在する。 また、pH1.9の強酸性の湖沼、pH11の強アルカリ性の ナクール湖 (ケニア)、塩分濃度が海水の3倍もある グレートソルト湖 (アメリカ)のような環境で棲息す る珪藻も存在する³⁸⁾。もちろん、そのような環境要素 は複合的に構成されることが多く、日本の酸性温泉で も珪藻が見出されている³⁹⁾。

珪藻は摂氏零度前後の環境から、温泉のような高温 域まで存在するが、バイオマスとしては比較的温度の 低い環境が多いとみられる。南洋で微細藻類の分布が 調べられているが、南緯45度の中緯度域では珪藻の 現存量は小さく (~1x10⁴ cells/L)、南緯 65 度の高緯度 域に向かって現存量の増加 (~8x10⁴ cells/L) が報告さ れている⁴⁰⁾。この傾向は渦鞭毛藻(6 x10⁴ => 0.5 x10⁴ cells/L) やシアノバクテリア (3 x10⁷ => ~0 cells/L) と は対照的である⁴⁰⁾。近年、人工衛星による観測から、 水圏のクロロフィルの現存量が測定されるようにな った (SeaWiFS; http://seawifs.gsfc.nasa.gov)。それによ ると、北極海沿岸や南極大陸沿岸など寒冷な環境にク ロロフィルの現存量の高い領域が集中している⁴¹⁻⁴³⁾。 珪藻はその主要な構成グループとみられ、生態系を支 える基礎生産者である。このような寒冷海域では、冬 季には季節海氷が発達し、その季節海氷の底部が茶褐 色に呈色することが知られている(図4)。これはアイ スアルジーと呼ばれる微細藻類が多量に存在するこ とによる。アイスアルジーとは、氷の結晶、あるいは 氷の結晶の間隙にある水の中など、海氷と密接に関わ り合って生きている微細藻類とされる^{44,45)}。アイスア ルジーには渦鞭毛藻も含まれるが、主要な構成生物は 珪藻である^{46、47)}。日本でも、近年結氷期間が短くな ってきたが、結氷期のサロマ湖等でアイスアルジーが 観察される^{23,48)}。

珪藻は、海洋表層の光の1%程度の有光層下部や海 水下部でも光合成を行うため、弱光適応型である⁴⁹。 また、常温性の珪藻の増殖速度(世代時間)は、単離 株の Chaetoceros muelleri で約12時間⁵⁰、P. tricornutum で 32時間以上⁵¹⁾の報告がある。最近、このような珪 藻の一般的に知られた性質を打ち破るものが日本の 研究者により報告された。香川県高松市内の河口干潟 で単離された中心目ツノケイソウ属の Chaetoceros salsugineum で、30°C、700 µmol photons·m⁻²·s⁻¹の条件 で増殖速度定数 0.54 h (世代時間約 1.3 時間) という驚 異的な増殖特性を強光下で示している⁵²⁾。しかし、こ のような増殖特性をもっても干潟が C. salsugineum で 埋まることはなく、その生態系の仕組みの解明が待た れる。

図4 海氷下部に付着しているアイスアルジー バフィン湾にて、砕氷船により割られた海氷が裏返り、 アイスアルジーが付着している海氷下部が露出された場 面(画面中央の濃い茶色に見える部分)。

羽状目には付着性の種が数多く知られている。イカ ダケイソウ(図5)はすだれのように細胞同士が接着 し、接着面がスライドすることによって南京玉すだれ のような運動をする。運動性があるため、その生育環 境における光合成のための光獲得戦略は興味深い。

周知ではないが、珪藻に特異的なウィルスが存在す ることが日本の研究者から報告されている^{53,54)}。珪藻 はしばしば高密度に増殖するので(ブルーム、珪藻赤 潮)、珪藻ウィルスは、結果的に生態系の維持に働い ているのかもしれない。珪藻は、稚貝・稚魚やエビの 養殖の餌としての利用価値が高い種類もあるが、自然

図 5 イカダケイソウ 山岡望海氏撮影。

界で大増殖をすると、漁業の妨げになることもある。 そのため、珪藻ウィルスを天然の珪藻防除剤として利 用することが考えられている。また、珪藻の形質転換 のためのプロモータ開発にも利用されている。

4. 多様な珪藻の環境応答戦略

一口に珪藻と言っても光強度変化への応答戦略が 異なることを伺わせる現象をほんの一例であるが、紹 介する。中心目の C. gracilis と羽状目の P. tricornutum を光強度を変えて培養すると、どちらの珪藻でも光捕 集を担う補助色素(フコキサンチンとクロロフィルc) の生育光強度に応じた組成変化は小さかった(図 2)。 一方、ディアディノキサンチンサイクル色素は、P. trircornutum では強光下 (300 µmol photons/m²/s) で培 養すると弱光培養に比べて顕著に増加したが、C. gracilis では若干の増加が見られたのみであった(図2)。 さらに、両者の間では NPQ(非光化学的消光)の変化 に、大きな相異が見られた。C. gracilis では、強光下培 養でディアディノキサンチンサイクル色素が増加し てはいるものの、強光照射されても NPQ は小さく、 培養光強度が大きくなるにつれ、NPO は却って小さく なる傾向が見られた(図 6、左のカラム)。一方、P. trircornutum では培養時の光強度が高いほど NPQ が高 く、また、同じ光強度で培養された細胞では、照射光 強度が強いほど、NPQ 活性は高かった(図6、右のカ ラム)。ただし、最も弱い光(3 μmol photons/m²/s)で 培養した P. tricornutum の細胞では、ディアディノキサ ンチンサイクル色素含量が少ないにも関わらず、大き な NPQ が観測された。現在、この仕組みの解明を進 めているところである。このように生育光強度に対す る二つの珪藻の応答は大きく異なるが、キサントフィ ルサイクル活性の低い C. gracilis の方が強光下でも勢 いよく増殖することができる。P. tricornutum は強光環 境に対して主にキサントフィルサイクルに依存し、C. gracilis は光合成電子伝達系から下流への電子のフロ ーを大きくして強光下での処理能力増強によって対 処している可能性が考えられる。また、両珪藻は生育 光強度に応じて光化学系 I、系 II への光エネルギーの 配分を調節しているが、その配分の仕方は異なるよう である(P. tricornutum は弱光環境下で光化学系Iによ り多くの光エネルギーを配分する。投稿準備中)。珪 藻ではステート遷移は知られていないので 55)、これら

図6 生育光強度の変化に応じたキサントフィルサ イクル活性(NPQ)の変化

左; Chaetoceros gracilis、右; Phaeodactylum tricornutum. 培養光強度は、上から 3、20、100、350µmol photons·m⁻²·s⁻¹。それぞれの培養細胞に90(\circ)、180(\blacksquare)、 350(Δ) µmol photons·m⁻²·s⁻¹の光を照射して測定した。 Ban ら²¹)より許可を得て転載。

の珪藻を材料にして強光応答機構について現在詳細 な解析を進めているところである。

5. おわりに

珪藻の環境適応戦略を理解し、珪藻がなぜ藻類の中 で最も多様化と繁栄を果たしてきたかを解明するた めには、光合成の生理学的特性を究明するとともに、 その特性を実現している光合成電子伝達系・炭酸固定 系の生化学的特性・構造生物学的特性と関連づけ、光 合成機構の調節システムを細胞内の他の代謝系と合 わせて理解することが重要であろう。このようなアプ ローチは、従来の単一の研究分野ではカバーできない ため、個体レベルの生理学的現象をタンパク質の構 造・機能およびゲノム情報や生理生態学的解析に基づ いて総合的に捉える融合的研究が必要である。我々の 研究グループではこのような取り組みをフィジオロ ミクスと名付け、珪藻の一つの種を対象に研究を進め ている。しかし、一般的にはこのような取り組みはモ デル生物以外では困難であり、上記のように、珪藻に 限っても種による多様性が大きいので、あらゆる種を 網羅的に研究対象とすることは不可能である。昨今、 再生可能エネルギー開発の機運と連動し、有用微細藻 類を見出すためのスクリーニングが積極的に行われ ている。そのような取り組みの中で、産業的な有用性 には適合しなくとも、特異な形質を有する株が見出さ れたときに、それを外部に発信し、研究対象として供 するような仕組みがあると、多様性の理解に繋がり、 ひいては有用形質利用系へと繋がることも期待され る。また、生態系における珪藻の重要性は古くから認 識され、生態学的研究の蓄積は非常に大きい。したが って、生態学との連携も重要であろう。一方、現代の 生命科学研究では分子生物学的手法が欠かせない。モ デル珪藻二種のゲノムが公開されており^{13,14)}、パーテ ィクルガンによる珪藻の形質転換系も開発され⁵⁶⁻⁵⁸⁾、 とくにモデル珪藻 P. tricornutum で成功裏に利用され ている⁵⁶⁾。最近、エレクトロポレーションを用いた方 法が開発され^{59,60)}、P. tricornutum では効率が格段に向 上した⁶⁰⁾。種により適用可能性が異なる可能性が高い が59、これらの手法を応用して多様な珪藻に適用でき るようになると、多様性の理解がより進展することが 期待される。

謝辞

個々のデータ取得に関わった方の名前を挙げませ んでしたが、多くの院生、学生や共同研究者の力によ るものであり、ここに感謝申し上げます。また、イカ ダケイソウの写真を提供くださった山岡望海氏、およ び本執筆の機会をいただきました鞆達也、園池公毅両 教授に感謝申し上げます。

Received March 18, 2015; Accepted March 22, 2015

参考文献

- Falkowski, P.G. and Raven, J.A. (2007) Aquatic Photosynthesis 2nd Ed, Princeton University Press, Princeton, USA.
- Kirk, J.T.O. (1994) Light & Photosynthesis in Aquatic Ecosystems 2nd Ed, Cambridge University Press, Cambridge.
- Sonoike, K. (1998) Various aspects of inhibition of photosynthesis under light/chilling sterss:

"Photoinhibition at chilling termperatures" versus "chilling damage in the light". *J. Plant Res.* 111, 121-129.

- Sims, P.A., Mann, D.G. and Medlin, L.K. (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. *Phycologia* 4, 361– 402.
- 菊谷早絵,中島健介 and 松田祐介 (2012) 細胞 工学による海洋性珪藻無機炭素獲得系およひ^{*} CO₂感知系の研究. *光合成研究* 22, 185-192.
- Hunt, J.M. (1979) Petroleum Geochemistry and Geology, W. H. Freeman and Co., San Francisco, CA.
- Levorsen, A.I. and Berry, F.A.F. (1967) *Geology of Petroleum* 2nd Ed, W. H. Freeman and Co., San Francisco, CA.
- North, F.K. (1985) Petroleum Geology, Allen & Unwin, Boston.
- Ramachandra, T.V., Mahapatra, D.M., Karthick, B. and Gordon, R. (2009) Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. *Ind. Eng. Chem. Res.* 48, 8769–8788.
- Nelson, D.M., Tréguer, P., Brzezinski, M.A., Leynaert, A. and Quéguiner, B. (1995) Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic silica sedimentation. *Global Biogeochem. Cy.* 9, 359–372.
- Field, C.B., Behrenfeld, M.J., Randerson, J.T. and Falkowski, P. (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. *Science* 281, 237–240.
- Green, B.R. (2003) The Evolution of Light-harvesting Antennas, in Light-Harvesting Antennas in Photosynthesis (Green, B.R. and Parson, W.W. Eds), pp 129-168 Kluwer Academic Publishers, Dortrecht, The Netherlands.
- Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, et al. (2004) The genome of the diatom *Thalassiosira pseudonana*: ecology, evolution, and metabolism. *Science* 306, 79–

86.

- Bowler, C., Allen, A.E., Badger, J.H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., wt al. (2008) The *Phaeodactylum* genome reveals the evolutionary history of diatom genomes. *Nature* 456, 239–244.
- Ikeda, Y., Komura, M., Watanabe, M., Minami, C., Koike, H., Itoh, S., Kashino, Y. and Satoh, K. (2008) Photosystem I complexes associated with fucoxanthin-chlorophyll-binding proteins from a marine centric diatom, *Chaetoceros gracilis. Biochim. Biophys. Acta* 1777, 351–361.
- Berkaloff, C., Caron, L. and Rousseau, B. (1990) Subunit organization of PSI particles from brown algae and diatoms: polypeptide and pigment analysis. *Photosyn. Res.* 23, 181–193.
- Beer, A., Gundermann, K., Beckmann, J. and Büchel, C. (2006) Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. *Biochemistry* 45, 13046–13053.
- Guglielmi, G., Lavaud, J., Rousseau, B., Etienne, A.L., Houmard, J. and Ruban, A.V. (2005) The light-harvesting antenna of the diatom *Phaeodactylum tricornutum*. Evidence for a diadinoxanthin-binding subcomplex. *FEBS J.* 272, 4339–4348.
- Papagiannakis, E., M., v.S.I.H., Fey, H., Büchel, C. and van Grondelle, R. (2005) Spectroscopic characterization of the excitation energy transfer in the fucoxanthin-chlorophyll protein of diatoms. *Photosynth. Res.* 86, 241–250.
- Veith, T. and Büchel, C. (2007) The monomeric photosystem I-complex of the diatom *Phaeodactylum tricornutum* binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes. *Biochim. Biophys. Acta* 1767, 1428–1435.
- Ban, A., Aikawa, S., Hattori, H., Sasaki, H., Sampei, M., Kudoh, S., Fukuchi, M., Satoh, K. and Kashino, Y. (2006) Comparative analysis of photosynthetic properties in ice algae and phytoplankton inhabiting Franklin Bay, the Canadian Arctic, with those in mesophilic diatoms during CASES 03-04. *Polar*

Biosci. 19, 11-28.

- Hashihama, F., Umeda, H., Hamada, C., Kudoh, S., Hirawake, T., Satoh, K., Fukuchi, M. and Kashino, Y. (2010) Light acclimation states of phytoplankton in the Southern Ocean, determined using photosynthetic pigment distribution. *Mar. Biol.* 157, 2263–2278.
- Aikawa, S., Hattori, H., Gomi, Y., Watanabe, K., Kudoh, S., Kashino, Y. and Satoh, K. (2009) Diel tuning of photosynthetic systems in ice algae at Saroma-ko Lagoon, Hokkaido, Japan. *Polar Sci.* 3, 57–72.
- Arsalane, W., Rousseau, B. and Duval, J.-C. (1994) Influence of the pool size of the xanthophyll cycle on the effects of light stress in a diatom: Competition between photoprotection and photoinhibition. *Photochem. Photobiol.* 60, 237–243.
- Kashino, Y. and Kudoh, S. (2003) Concerted response of xanthophyll-cycle pigments in a marine diatom, *Chaetoceros gracilis*, to the sifts of light condition. *Phycol. Res.* 51, 168–172.
- Olaizola, M. and Yamamoto, H.Y. (1994) Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in *Chaetoceros muelleri* (Bacillariophyceae). J. Phycol. 30, 606–612.
- Demmig-Adams, B. (1990) Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. *Biochim. Biophys. Acta* 1020, 1–24.
- Tanabe, Y., Shitara, T., Kashino, Y., Hara, Y. and Kudoh, S. (2011) Utilizing the effective xanthophyll cycle for blooming of *Ochromonas smithii* and *O. itoi* (Chrysophyceae) on the snow surface. *PLoS One* 6, e14690.
- Lichtlé, C., Arsalane, W., Duval, J.C. and Passaquet,
 C. (1995) Characterization of the light-harvesting complex of *Giraudypsis stellifer* (Chrysophyceae) and effects of light stress. J. Phycol. 31, 380–387.
- Harker, M., Berkaloff, C., Lemoine, Y., Britton, G., Young, A., Duval, J.-C., Rmiki, N.-E. and Rousseau, B. (1999) Effects of high light and desiccation on the operation of the xanthophyll cycle in two marine brown algae. *Eur. J. Phycol.* 34, 35–42.
- 31. Lohr, M. and Wilhelm, C. (1999) Algae displaying

the diadinoxanthin cycle also possess the violaxanthin cycle. *Proc. Natl. Acad. Sci. USA* 96, 8784–8789.

- Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306.
- Shifrin, N.S. and Chisholm, S.W. (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J. Phycol. 17, 374–384.
- Sicko-Goad, L.M., Schelske, C.L. and Stoermer, E.F. (1984) Estimation of intracellular carbon and silica content of diatoms from natural assemblages using morphometric techniques. *Limnol. Oceanogr.* 29, 1170–1178.
- Martinson, T.A., Ikeuchi, M. and Plumley, F.G. (1998) Oxygen-evolving diatom thylakoid membranes. *Biochim. Biophys. Acta* 1409, 72–86.
- 36. Ikeda, Y., Satoh, K. and Kashino, Y. (2005) Characterization of photosystem I complexes purified from a diatom, *Chaetoceros gracilis*, in *Photosynthesis: Fundamental Aspects to Global Perspectives* (van der Est, A. and Bruce, D. Eds) Vol 1, pp 38-40 Alliance Communications Group, Kansas.
- Nagao, R., Ishii, A., Tada, O., Suzuki, T., Dohmae, N., Okumura, A., Iwai, M., Takahashi, T., Kashino, Y. and Enami, I. (2007) Isolation and characterization of oxygen-evolving thylakoid membranes and Photosystem II particles from a marine diatom *Chaetoceros gracilis. Biochim. Biophys. Acta* 1767, 1353–1362.
- 38. 千原光雄 (1997) 藻類多様性の生物学, 内田老鶴 圃, 東京.
- 長島秀之 (2010) 温泉微生物と社会, 温泉科学
 60, 278–286.
- 40. Wright, S.W., Thomas, D.P., Marchant, H.J., Higgins, H.W., Mackey, M.D. and Mackey, D.J. (1996) Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the "CHEMTAX" matrix factorisation program. *Mar. Ecol. Prog. Ser.* 144,

285-298.

- Arrigo, K.R., Dieckmann, G., Gosselin, M., Robinson, D.H., Fritsen, C.H. and Sullivan, C.W. (1995) High resolution study of the platelet ice ecosystem in McMurdo Sound, Antarctica: biomass, nutrient, and production profiles within a dense microalgal bloom. *Mar. Ecol. Prog. Ser.* 127, 255–268.
- Arrigo, K.R., Robinson, D.H. and Sullivan, C.W. (1993) A high resolution study of the platelet ice ecosystem in McMurdo Sound, Antarctica: Photosynthetic and bio-optical characteristics of a dense microalgal bloom. *Mar. Ecol. Prog. Ser.* 98, 173–185.
- Arrigo, K.R. and van Dijken, G.L. (2004) Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic. *Geophys. Res. Lett.* 31, L08304.
- Horner, R.A. (1976) Sea-ice organisms. Oceanogr. Mar. Biol. Annu. Rev. 14, 167–182.
- Horner, R.A. (1985) Ecology of sea ice microalgae, in *Sea Ice Biota* (Horner, R.A. Ed), pp 83–103 CRC Press, Boca Raton.
- Michel, C., Legendre, L., Demers, S. and Therriault, J.-C. (1988) Photoadaptation of sea-ice microalgae in springtime: photosynthesis and carboxylating enxymes. *Mar. Ecol. Prog. Ser.* 50, 177–185.
- Michel, C., Legendre, L., Therriault, J.-C., Demers, S. and Vandevelde, T. (1993) Springtime coupling between ice algal and phytoplankton assemblages in southeastern Hudson Bay, Canadian Arctic. *Polar Biol.* 13, 441–449.
- Kashino, Y., Fujimoto, K., Akamatsu, A., Koike, H., Satoh, K. and Kudoh, S. (1998) Photosynthetic pigment composition of ice algal and phytoplankton assemblages in early spring in Saroma ko lagoon, Hokkaido, Japan. *Proc. NIPR Symp. Polar Biol.* 11, 22–32.
- Ikeya, T., Kashino, Y., Kudoh, S., Imura, S., Watanabe, K. and Fukuchi, M. (2000) Acclimation of photosynthetic properties in psychrophilic diatom isolates under different light intensities. *Polar Biosci.* 13, 43–54.

- Chen, S.-Y., Pan, L.-Y., Hong, M.-J. and Lee, A.-C. (2012) The effects of temperature on the growth of and ammonia uptake by marine microalgae. *Bot. Studies* 53, 125–133.
- Nelson, D.M., D'Elia, C.F. and Guillard, R.R.L. (1979) Growth and competition of the marine diatoms *Phaeodactylum tricornutum* and *Thalassiosira pseudonana*. II. Light limitation. *Mar. Biol.* 50, 313–318.
- 52. Ichimi, K., Kawamura, T., Yamamoto, A., Tada, K. and Harrison, P.J. (2012) Extremely high growth rate of the small diatom *Chaetoceros salsugineum isolated* from an estuary in the eastern Seto Inland Sea, Japan. J. Phycol. 48, 1284–1288.
- 53. Nagasaki, K., Y., T., Katanozaka, N., Shirai, Y., Nishida, K., Itakura, S. and Yamaguchi, M. (2004) Isolation and characterization of a novel single-stranded RNA virus infecting the bloom-forming diatom *Rhizosolenia setigera*. *Appl. Environ. Microbiol.* 70, 704–711.
- Tomaru, Y., Toyoda, K., Kimura, K., Hata, N., Yoshida, M. and Nagasaki, K. (2012) First evidence for the existence of pennate diatom viruses. *ISME J.* 6, 1445–1448.
- 55. Owens, T.G. (1986) Light-harvesting function in the diatom *Phaeodactylum tricornutum*: II. Distribution

of excitation energy between the photosystems. *Plant Physiol.* 80, 739–746.

- Apt, K.E., Kroth-Pancic, P.G. and Grossman, A.R. (1996) Stable nuclear transformation of the diatom *Phaeodactylum tricornutum. Mol. Gen. Genet.* 252, 572–579.
- Dunahay, T.G., Jarvis, E.E. and Roessler, P.G. (1995) Genetic transformation of the diatoms *Cyclotella cryptica* and *Navicula saprophila*. J. Phycol. 31, 1004–1012.
- Miyagawa-Yamaguchi, A., Okami, T., Kira, N., Yamaguchi, H., Ohnishi, K. and Adachi, M. (2011) Stable nuclear transformation of the diatom *Chaetoceros* sp. *Phycol. Res.* 59, 113–119.
- Ifuku, K., Yan, D., Miyahara, M., Inoue-Kashino, N., Yamamoto, Y.Y. and Kashino, Y. (2015) A stable and efficient nuclear transformation system for the diatom *Chaetoceros gracilis*. *Photosynth. Res.* 123, 203–211.
- Miyahara, M., Aoi, M., Inoue-Kashino, N., Kashino, Y. and Ifuku, K. (2013) Highly efficient transformation of the diatom *Phaeodactylum tricornutum* by multi-pulse electroporation. *Biosci. Biotechnol. Biochem.* 77, 874–876.

Understanding of the Adaptation/Acclimation Strategy to the Diversity in the Nature: in the World of Diatom

Yasuhiro Kashino*

Graduate School of Life Science, University of Hyogo

解説

クロロフィルを制した者が光環境を征した? 光合成生物を「食べる」生き様の舞台裏[‡]

¹福井工業大学大学院工学研究科,²JSTさきがけ,³立命館大学大学院生命科学研究科 ⁴筑波大学生命環境系

柏山 祐一郎^{1,2,3,*} 横山 亜紀子⁴ 民秋 均³

酸素発生型光合成が支える現在の地球生命圏では、クロロフィルの光毒性、すなわち光合成に不可欠 なクロロフィルの光増感作用に起因する一重項酸素の生成は、生命にとって潜在的な脅威である。し かし、この光毒性が顕在化して生物が致命的なダメージを被るような現象が身の回りにあふれている 様子はない。実際には、クロロフィル光毒性の脅威は様々な形で巧みに回避されている。本稿では、 クロロフィルの光増感作用について概説し、近年ようやく研究が進んできたクロロフィルの「解毒」 機構、特に著者らが取り組んでいる微細藻類食プロティストによるクロロフィルの代謝について解説 し、生命進化を駆動した要因としてのクロロフィルの光毒性について考える。

1. はじめに

クロロフィルは、地球生命の光合成の仕組みにとっ て不可欠な因子であるが故に、様々な生態系を成立せ しめているエネルギーフローの基点を形成する、いわ ば地球生命圏の要(かなめ)分子である。しかし同時 に、細胞レベルにおいて、クロロフィルは化学反応性 の高い「危険な因子」の代表例でもある。すなわち、 精密な制御がなされないフリーのモノマーとして存 在する場合には、クロロフィルは光毒性を示す。しか も、このクロロフィルの「危険な」性質は、実は「光 合成で不可欠である」性質と表裏を為すものである。 したがって、この「危険な因子」のターンオーバープ ロセスでは、副反応によって代謝経路に阻害を生じた り、あるいは破壊的なダメージの連鎖が細胞全体に及 んだりするような事態は回避せねばならず、そのため の様々な仕組みが、進化の過程で自然選択され現存し ているものと考えられる。

クロロフィルは光励起状態の寿命が比較的長いた め、他の分子へ効率よくエネルギー移動を起こしうる。 この性質が光合成の光反応の過程を可能としている 一方で、クロロフィルの励起エネルギーが酸素分子に 与えられると、一重項酸素と呼ばれる、強力な酸化力 を有し細胞毒性の高い分子が生じてしまう。このため、 クロロフィルの光毒性の制御は、植物細胞のダイナミ クスにおいて、あるいは、後述する捕食-被食などの細 胞間の相互作用において潜在的に極めて重要だと考 えられる。この問題は、3つの基本的な因子全てが揃 って初めて惹起される:すなわち、光増感剤(後述) であるクロロフィル分子と、適度なエネルギーを持つ 光子(クロロフィルが吸収できる近紫外から可視光域 の光)、それに最終的にエネルギーを受容する酸素分 子である。なお、基底状態が三重項状態である酸素分 子の直接的な光励起による一重項状態への遷移は禁 制であり、光増感剤無しには起こらない。

特に、クロロフィルの光毒性は、クロロフィルを光 受容アンテナとして光合成電子伝達を駆動し、水の酸 化によって光合成タンパク質近傍に酸素分子が発生 する酸素発生型光合成生物、すなわち、藻類や陸上植 物において、クロロフィルの光毒性は本質的な問題で ある。現実には、光合成の仕組みにおいては、クロロ フィルは光合成関連タンパク質中に正確に配置され ることで「精密な制御」を受けていると考えられる¹⁾。 これにより、適度な光子フラックスの中で効率よく光 合成電子伝達系にエネルギーを供給し、あるいは必要 十分にカロテノイド等を経由して緩和されている。い

^{*}解説特集「光合成の多様な世界について」

^{*}連絡先 E-mail: chiro@fukui-ut.ac.jp

ずれの場合にも、クロロフィル分子が受容したエネル ギーは、遅くとも数ナノ秒以内に他の隣接する分子に 移動することによって、速やかに基底状態に戻される。

つまりクロロフィルの光毒性は、健全な光合成の仕 組みでみられるような速やかなエネルギー移動が起 こらない場合において顕現化しうる。この状況におい て、クロロフィルの光増感作用こそが生命にとって戦 略的に制御すべき因子になる(上述の光毒性に関する 3つの因子のうち光と酸素は現在の地球表層環境の 普遍的な要素であるため)。次章では、まず、クロロ フィルの光化学を俯瞰し、特に「光毒性」と呼ばれる 性質について解説する(この部分は、おおむね Kashiyama and Tamiaki²⁾の部分的邦訳)。 その上で、 クロロフィルの光毒性を制御・無効化するための分解 代謝プロセスについて最新の成果を紹介し、生命、特 に真核生物の進化におけるクロロフィルの光毒性の 関わりについて論じる。

2. クロロフィルの光毒性とその静的な制御 機構

クロロフィルは、近紫外から可視光領域全域(種類 によっては近赤外域まで)にわたる幅広い吸収帯を有 する分子である³⁾。多くのπ共役系をもつ有機分子と 同じく、基底状態にあるクロロフィルは一重項状態で ある(S₀状態)。クロロフィルが1光子のエネルギー を吸収して励起されると、まず、エネルギー準位の最 も低い一重項励起状態であるS₁状態まで、熱エネルギ ーを放出して緩和される(図1)。クロロフィルとそ の誘導体の特徴は、遊離状態において S₁ 状態の寿命 (ϕ_S)が比較的長いことにある (3.5~6.0 ns 程度⁴⁾)。 S₁状態にあるクロロフィルは、その後、大きく分けて

3つの過程をたどってさらに緩和される。そのうちの 2過程では、蛍光(fl)を発する(光エネルギーの放 出)、あるいは内部転換(ic)によって熱エネルギー を放出することで、 S_0 状態にまで緩和される(図1; それぞれの量子収率を ϕ_{fl} および ϕ_{ic}^{S} と表す)。もう一 つの過程では項間交差が起こり、より安定な三重項の 励起状態(T_1 状態)に遷移する(図1;項間交差の量 子収率は ϕ_{fl} と表す)。したがって、単量体のクロロフ ィルの近傍にエネルギー移動を受けうる他の分子が 存在しない限りにおいて、1光子励起の緩和過程の量 子収率は:

$\boldsymbol{\Phi}_{\mathrm{fl}} + \boldsymbol{\Phi}_{\mathrm{ic}}^{\mathrm{S}} + \boldsymbol{\Phi}_{\mathrm{T}} = 1$

と表現される。重要なことに、クロロフィルやその脱 金属誘導体であるフェオフィチンなどにおいては S_1 状態の寿命が長いだけでなく、 S_1 状態と T_1 状態の間の エネルギー差が小さいため、 ϕ_{Γ} の値が大きくて T_1 状 態に高確率で遷移する(図 1)。 T_1 状態からは燐光(ph) を発する(光エネルギーの放出)か項間交差(isc)に よって熱エネルギーを放出するかして、 S_0 状態にまで 緩和される(図 1)。したがって、それぞれの量子収 率を ϕ_{ph} ないし ϕ_{isc}^T とおくと、以下の関係

図1. 色素の光励起と光物理的過程、および光増感作用 柏山・横山³⁵⁾より一部改変。 という関係が成り立つ。

さて、三重項状態にある分子が同じく三重項状態(T1 状態)にあるクロロフィルに対して相互作用しうる距 離に存在する場合、分子間のエネルギー移動が起こる。 例えば、我々が普段呼吸している大気中の酸素分子は、 基底状態にあって三重項状態をとっている(To状態)。 この三重項酸素(³O₂)が T₁状態にあるクロロフィル に近接すると、クロロフィルが So 状態に緩和されると 同時に一重項状態に励起された酸素分子、すなわちー 重項酸素(¹O₂)が生じる(図1)。この三重項エネル ギー移動では、分子間で不対電子の交換が起こる必要 があるため(Dexter エネルギー移動)、分子軌道の交 差が起こる程度に2分子がかなり接近する必要がある (ファンデルワールス半径以下;約4Å以内)。この 点で一般的に、アンテナタンパク質内部において、比 較的離れたクロロフィル分子間で起こるような一重 項エネルギー移動である Förster 共鳴エネルギー移動 (FRET) と異なっている。このように、禁制である T₀状態から S₁状態への項間交差を伴う励起を促す作 用を、光増感作用(クロロフィルは「光増感剤」)と 呼ぶ。

ところで、分子の衝突が要求される三重項エネルギ ー移動においては、 T_1 状態の寿命が重要になる。クロ ロフィルは T_1 状態の寿命が非常に長いため(ϕ_T = 0.8 ~1.5 ms 程度⁴⁾)、非常に高い確率で三重項酸素へエ ネルギーが移動しうる(この量子収率を ϕ_{Δ}^T とおく)。 実質的には、全ての T_1 状態のクロロフィルは一重項酸 素の発生に寄与しうると考えられる(すなわち $m{ \phi}_{\!\! \Delta}^{
m T}pprox m{ \phi}_{\!\! \Gamma}$)。

一重項酸素の化学的性質は通常の三重項酸素のそれとは全く異なるものである。 Δ 状態にある一重項酸素($^{1}\Delta_{g}$ 状態)にあっては、縮退した反結合性 π 軌道のうちの1つが空軌道となるため(もう一つは2電子が占有)、この不安定な空軌道を埋めるべく強力な酸化力が生じる(図 2)。このような不安定性にもかかわらず、 $^{1}\Delta_{g}$ 状態から基底状態である³ Σ_{g} 状態への逆項間交差を伴う遷移は強い禁制であるため、一重項酸素の寿命は特異的に長く($\Phi_{\Delta} \approx 3.5 \ \mu s$ in cells⁷⁾)、細胞内でかなりの距離を拡散しうる。このように、クロロフィルの光増感作用によって、強力な酸化剤である一重項酸素が細胞内で発生しうるのである。

ところで、 T_1 状態にあるクロロフィル (Chl) は他 の分子への電子移動、すなわち光化学反応 (pc) も引 き起こしうる。特に、三重項酸素への電子移動により 活性酸素種であるスーパーオキシドアニオン (O_2^{-}) が発生し、同時に強力な酸化力を有するクロロフィル カチオンラジカル (Chl⁺⁺) になる (この光化学反応の 量子収率を Φ_{pc}^{T} とおく)。一重項酸素を含め、これらは 全て細胞に対して破壊的に作用しうる。

さて、ここでもう2つの過程、すなわち、クロロフ イルの S₁状態からの FRET 及び光化学反応を考慮し、 それぞれの量子収率をΦ^S_{FRET}およびΦ^S_{pc}とおく。すると、 相互作用しうる分子の存在下における、クロロフィル の光励起の緩和過程の量子収率は、以下の関係式にま

図 2. A.三重項状態、および B.一重項状態にある酸素分子の分子軌道ダイアグラム

柏山・横山³⁵⁾より一部改変。一重項酸素(¹Δ_g)ではエネルギー準位の高い空のπ電子軌道が存在し、これが電子を求めることにより強い酸化力を示す。なお、酸素分子の一重項酸素への励起は電子状態が異なるため禁制であり、通常は光 増感作用が無ければ発生しない。 とめられる。

$$\boldsymbol{\Phi}_{\mathrm{fl}} + \boldsymbol{\Phi}_{\mathrm{ic}}^{\mathrm{S}} + \boldsymbol{\Phi}_{\mathrm{FRET}}^{\mathrm{S}} + \boldsymbol{\Phi}_{\mathrm{pc}}^{\mathrm{S}} + \boldsymbol{\Phi}_{\mathrm{T}} = 1$$

 $\boldsymbol{\Phi}_{\mathrm{T}} = \boldsymbol{\Phi}_{\mathrm{ph}} + \boldsymbol{\Phi}_{\mathrm{isc}}^{\mathrm{T}} + \boldsymbol{\Phi}_{\Delta}^{\mathrm{T}} + \boldsymbol{\Phi}_{\mathrm{pc}}^{\mathrm{T}}$

このうち、 $\phi_{\Delta}^{T} \geq \phi_{pc}^{T}$ の2項が光毒性に関連する。よっ て、 $\phi_{FRET}^{S} \geq \phi_{pc}^{S}$ の項を相対的に大きくすることにより、 生物はクロロフィルの光毒性を抑制しうることが分 かる。興味深いことに、光合成の初期過程においては この2つの緩和過程、すなわちクロロフィル分子間の FRET 過程(アンテナにおける集光過程)とS₁状態か らの電子移動(反応中心における電荷分離)が寄与し ており、光合成という仕組みの本質、特にそのはじま りを考える上で重要ではないだろうか。なお、 ϕ_{fl} 、 ϕ_{ph} 、 ϕ_{fc}^{S} 、および ϕ_{fsc}^{T} であらわされる緩和過程は基本 的に生物により制御しうる性質のものではない。

健全な光合成器官においては、クロロフィルに加え てカロテノイドの光化学的な性質を利用した、いわば 静的なクロロフィル光毒性の制御がなされている。す なわち、クロロフィルは $\phi_{\text{FRFT}}^{\text{S}}$ で表される S_1 状態にあ るクロロフィルからの FRET 過程の緻密な調整と、さ らに予備的な T₁ 状態にあるクロロフィルのエネルギ ーをカロテノイドに逃がす仕組みによって光毒性が 回避されている。前者では、複数のクロロフィルがタ ンパク質複合体中に適切な空間配置(効率的な FRET を担保する分子の距離と配向)をとり⁸⁾、また、周辺 アンテナから反応中心に向かって S1 状態励起エネル ギーの勾配(タンパク質の溶媒効果による)⁹⁾が用意 され、発熱を伴う効率的なエネルギー移動が可能とな っている。さらに、余剰な S₁状態励起エネルギーは、 同じく光合成器官に緻密に配向されたある種のカロ テノイド分子に FRET により受け渡され¹⁰⁾、そのカロ テノイドにおいて熱的に緩和される仕組みが備わっ ている (カロテノイドは**Φ**^S_{ir} ≈1)。それでも過剰な励 起エネルギーを処理しきれない場合、項間交差が起こ り、クロロフィルがT1状態に遷移してしまうが、この T₁状態励起エネルギーも、ファンデルワールス半径内 のごく近傍に配されたある種のカロテノイドに対し て速やかに移動され 11~14)、そこでやはり熱的に緩和さ れる (カロテノイドは $\phi_{\Lambda}^{T} \approx 0$)。 つまり、カロテノイ ドを含めた光合成器官の色素システム全体として、

3. クロロフィルの無毒化代謝と光毒性の動 的な制御機構

さて、「クロロフィルの光毒性の制御に関わる3つ の基本的なファクター」をもう一度考えてみる。根本 的にこの問題を解消する手立てとして、そもそも単量 体分子としてのクロロフィルの光増感作用を失わせ るということも考え得る。これはすなわち、クロロフ ィルを光無毒性の分子に代謝することである。上述の 量子収率の式で表現するならば、 Φ_{ic}^{S} あるいは Φ_{ic}^{S} + Φ_{isc}^{T} を1にする(この場合 $\Phi_{ll} + \Phi_{ph}$ は0になる)、あ るいは Φ_{Γ} を0に近づける変化が要求される。この化学 変化を伴う制御は、静的な機構である光合成タンパク 質内での制御とは対照的な、動的な機構である。

現在までに、2 種類のクロロフィルの光無毒化のプ ロセスが知られている。そのうちの一つが、被子植物 の紅葉や枯葉の際にクロロフィルの緑色が「消失」す る現象であり、ここではクロロフィルが最終的に無色 で可視光領域の蛍光を発しない直鎖テトラピロール 化合物まで分解される (図 3)¹⁵⁾。この変化では、 ϕ_{ic}^{S} が 大きくなると共に、 ϕ_S 減少と S_1 状態/ T_1 状態間のエ ネルギー差の拡大により ΦT も0に近づく。この代謝経 路は、その特徴的なクロリン環の開環ステップを触媒 する Pheophorbide a oxygenase から「PAO 経路」と称 される。重要なことに、PAO 経路の全ての中間代謝産 物は光毒性であり、野生株では基本的に中間代謝産物 は蓄積されない。この精密に制御された代謝経路によ り、色素体内のクロロフィルは全て分解・搬出されて、 最終産物は液胞内に蓄積される(最後の液胞内におけ る自発的異性化反応により完全に無毒化される)。

この紅葉におけるクロロフィルの「消失」現象は長 らく謎に包まれていたが、ここ 20 年ほどの研究で、 モデル植物に関してはおおよそが解明された^{16,17)}。 PAO 経路には 10 近くの酵素やトランスポーターが関 与すると考えられ、多くの還元力や自由エネルギーが

61

消費される(図3)。しかも、窒素原子を含む最終代 謝産物は、植物自身により再利用されることなく環境 中に捨て去られる。被子植物は、このような大きなコ ストを割いてまでもクロロフィルを無毒化し「制する」 ことで、死にゆく細胞からクロロフィルを含んでいた タンパク質という栄養を回収することを可能として いると考えられる。PAO 経路の詳細に関しては、クロ ロフィルの光毒性の観点から Kashiyama and Tamiaki²⁾ の中にまとめた。さらに詳しくは、Tanaka *et al.*¹⁷⁾など を参考にされたい。以下では、著者らが中心となり発 見されたもう一つの無毒化プロセスについて詳しく 解説することにする。

4. 微細藻類食プロティストによるクロロフィルの無毒化代謝

光合成器官の光化学的な制御システムが外力によ って乱される場合、例えば細胞自体が捕食・消化され るような状況においては、制御を失ったクロロフィル の光毒性が顕在化すると予想される。特に光照射下で は、単量体として遊離されたクロロフィルやその誘導 体により一重項酸素が発生することで、捕食者の細胞 が深刻なダメージを被る可能性が考えられる。大型生 物の消化器官はクロロフィルに対して暗黒であるた め(生体組織の光散乱やヘムや水の吸収などにより生 体深部にはほとんど届かない)、クロロフィルの光毒 性は問題にならない。光が消化器を透過してしまうよ うな小型の多細胞生物では、人為的な操作によってク ロロフィルの光毒性が顕在化するケースが知られて いる¹⁸⁾。また、光線力学療法(photodynamic therapy; PDT)と呼ばれる医療技術では、クロロフィル誘導体 やその他の光増感剤を疾患組織に作用させた上で光 を照射し、発生する一重項酸素などにより組織を選択 的に壊死させている¹⁹⁾。光毒素の副作用は重大である ため、この治療期間前後には患者は暗室での生活を強 いられることになる。

図3 被子植物におけるクロロフィルの光毒性を回避する機構

光合成器官においては、カロテノイドへの効率的なエネルギー移動により過剰な励起エネルギーが緩和される。紅葉や枯葉の過程で進行するクロロフィルの分解では、まずチラコイド膜中で、Chl-aのマグネシウムが脱離されフェオフィチンa(Phe-a)になる。さらに、フェオフィチナーゼ(PPH)によりフィトールエステルが加水分解されて親水性のフェオフォルバイドa(PPB-a)がストロマ中に遊離する。PPB-aはPAOにより酸化的に開環されて、直鎖状テトラピロールである赤色クロロフィル代謝物(RCC)になるが、これは直ちにPAOに結合するRCCリダクターゼ(RCCR)により蛍光性クロロフィル代謝物(p-FCC)が生じる。p-FCCは細胞質中に輸送され、ここでさらなる修飾を受けた後(m-FCCs)、液胞内に輸送される。液胞内部で酸による異性化を受けて、無蛍光性クロロフィル代謝物(NCC)になる。なお、クロロフィルb(Chl-b)は、最初にChl-aに転換されてから分解される。詳細はKashiyama and Tamiaki³を参照のこと。

図4 さまざまな微細藻類食プロティストの光学顕微鏡像

A: 無色ユーグレノイド Peranema sp.; 基物表面を滑走し、微細藻(真眼点藻 Nannochloropsis sp.)を次々に細胞内に取り込む。B: 珪藻食鞭毛虫 Hemistasia phaeocysticola; 集団で珪藻 Thalassiosira sp.を襲い、最終的に珪藻の殻内に侵入して細胞を 食い破る³⁶。C: カラタイヨウチュウ Marophrys sp.; 放射状に伸びた軸糸で鞭毛藻などを絡め取り、細胞内に引きずり込む ³⁷⁾; 捕食された緑藻 Pyramimonas sp.の色素体が細胞内に見られる。D: 無色ケルコゾア鞭毛虫 Abollifer globosa²⁵⁾; 珪藻 Skeletonema costatum の鎖状コロニーを飲み込んで食胞内に取り込んでいる。スケールバーは全て 20 μm。

一方、天然においては、植物(微細藻類など)を餌 として生活しているプロティスト(単細胞性の真核生 物)にとって、クロロフィルの光毒性は極めて重大な 問題となると想像される。捕食性のプロティストは、 外部から餌生物やその組織を細胞内に取り込んで食 胞を形成し、これに消化酵素などを小胞輸送(二次リ ソソームの形成)して消化・分解することで栄養を摂 取しているが、その細胞は基本的に光をよく透過する (図 4)。従って、消化物に含まれるクロロフィルや その誘導体は光励起される状況にあり、直感的には光 毒性の深刻な影響が示唆される。それにも関わらず、 光環境下における微細藻類食プロティストの活動は、 実際には水圏環境において極めて普遍的かつ量的に 重要なものである。ここに、もう一つのクロロフィル の無毒化プロセスが存在しているのである。

著者らは最近、様々な捕食性プロティストの捕食過 程において、餌である微細藻類の含まれるクロロフィ ル(chlorophyll *a* 及び *b*)が、シクロフェオフォルバイ ドエノール類(13²,17³-cyclopheophorbide *a/b* enols; cPPB-*a*E/*b*E あるいは総称して CPEs と略されるが、本 稿では「シクロエノール類」と称す)に代謝されてい ることを発見した(図 5)^{20,21)}。すなわち、捕食性プロ ティストと微細藻類の二員培養系に対して有機溶媒 により抽出・分析すると、シクロエノール類が主要な クロロフィル誘導体として見いだされるのである。

シクロエノール類は、クロロフィルのポルフィリン 骨格の13位と17位の二つのエステル間でクライゼン 縮合的に形成されると考えられるエキソ7員環構造を 有するクロリン化合物である²²⁾。興味深いことに、こ の緑色を呈する色素は、溶液状態において蛍光を全く (もしくはほとんど)発しない (cPPB-aE において $\Phi_{\rm F}$ <0.002)。また、溶液中での光照射実験において、他 のクロロフィル誘導体とは対照的に、cPPB-aE は一重 項酸素を発生させる光増感作用が全くないことも示 された(すなわち $\Phi_{\Lambda}^{T} \approx \Phi_{T} \approx 0$)²⁰⁾。つまり、クロリ ン環の共役系が完全な形で保存されるにもかかわら ず、クロリン化合物に特徴的な蛍光性も光増感作用も 示さず、励起エネルギーが全て熱的に緩和されると考 えられる (Φ_{ic}^{S} = 1)。その緩和機構については未解明 であるが、この化合物にユニークな特徴である、クロ リン環と共役したエノール構造の関与が可能性とし て考えられる 22~24) (例えばケト-エノール体の互変異 性に伴うプロトン移動消光)。このような性質を踏ま えると、シクロエノール類は、プロティストの消化過 程におけるクロロフィルの無毒化代謝の産物である と考えられる。

図5 微細藻類食プロティストによるシクロエノール代謝

微細藻類を餌とするプロティストには、図のように餌生物を丸呑みして食胞(ファゴソーム)を形成し消化する(ファゴ サイトーシス)ものや、餌生物の細胞内容物を吸い出して食胞に取り込む(ミゾサイトーシス)ものなどがみられる。フ ァゴサイトーシスにおいては、細胞膜由来の食胞膜で餌を包み込み、リソソームを融合させることで消化を行う。この過 程で、クロロフィルの分解(シクロエノール代謝)に関わる酵素がファゴソーム内に輸送されて、色素体の消化の初期段 階においてシクロエノールが産生されるものと考えられる。

シクロエノール類を生じる代謝過程(以下、便宜的 に「シクロエノール代謝」と称する)の酵素について は未報告であるが、その反応メカニズムは、PAO 経路 とは対照的に極めてシンプルであると想像される。す なわち、マグネシウムイオンの脱離に続いて、13²位 のメトキシカルボニル基の加水分解(この過程が酵素 触媒を要する)後に迅速な脱炭酸が起こり、これによ り生じるエノラートが 17²位のカルボニル基を攻撃し て縮環するという、速やかな発エルゴン反応による可 能性が考えられる(還元力も自由エネルギーも要求さ れない酵素反応)。実際、珪藻 Skeletonema costatum を 餌とする鞭毛虫 Abollifer globosa の捕食過程を顕微鏡 で観察すると、捕食後 10 分以内の時点で、食胞内に 取り込まれた珪藻の色素体から発するクロロフィル 蛍光が急速に減衰する様子が観察された(図 6)^{20,25)}。 これ以降の段階で、色素体が徐々に萎縮する様子が観 察され、珪藻の細胞組織の本格的な消化分解が進行し ているものと考えられた。このような培養を経て色素 分析を行なうと、珪藻が本来含有する chlorophyll *a* は ほとんど検出されず、代わりに多量の cPPB-*a*E (chlorophyll *a* 起源のシクロエノール類)が検出され た。このため、シクロエノール代謝は、消化の初期の 段階で速やかに進行するものであると示唆された²⁰⁾。

図 6 ケルコゾア生物 Abollifer globosa が珪藻 Skeletonema costatum を捕食しファゴサイトーシスに より消化する様子の顕微鏡明視野像(左列)と、そ れに伴い S. costatum の色素体のクロロフィル蛍光(励 起光 400-440 nm) が減衰する様子のタイムラプス観 察(右列)

右列蛍光画像中の点線は、A. globosa 細胞輪郭をトレース したもの。A および A':赤い矢印の方向に向かって、ア メーバ状に変形した A. globosa が S. costatum のコロニー 全体を包み込んで食胞を形成する過程(0分)。Bおよび B': 4 分後、S. costatum の鎖状コロニーが完全に A. globosa の食胞内に収まった状態。A. globosa はこの状態 でなお鞭毛遊泳する。C および C': 13 分後、A. globos の食胞内にある S. costatum コロニーのほとんどの色素体 のクロロフィル蛍光が大きく減衰・消失した。この間、 これら色素体の蛍光減衰は非同調的に進行し、例えばこ の時点でも、矢頭で示した色素体では蛍光の減衰が未だ 顕著でない。D および D': 28 分後、A. globos の食胞内 にある S. costatum の色素体からのクロロフィル蛍光が完 全に消失した。周囲の「生きた」S. costatum コロニーの 蛍光と比べると、違いは顕著である。EおよびE': 65 分後までに、A. globos の食胞内にある S. costatum の色素 体は萎縮し、無蛍光の暗褐色の顆粒状構造物へと変化し た。F および F': これら構造は、81 分において A. globos が食胞の内容物を排出(エキソサイトーシス)するに至 ってなお、珪藻のガラスの被殻内に留められていた。ス ケールバーは 50 μ m_o Kashiyama *et al.*²⁰ の Supporting Figure 2 を一部改変して転載。

このように速やかな代謝は、食胞内での消化過程で 遊離しうるクロロフィルに対処するための必要条件 であると考えられる。一方、シクロエノール類は、分 析条件下などでは酸素分子により容易に酸化され、再 び蛍光性で光増感作用を示す誘導体(ヒドロキシクロ ロフィロン類など)に変化してしまう^{20,26~28)}。この光 毒性の酸化物は、環境試料中(海水や底泥)からもあ る程度検出され、天然でも多少なり生じてしまう化合 物であると考えられる。さらには、微細藻類食プロテ ィストの分析からは、パイロフェオフィチン類(クロロ フィルから中心マグネシウムと 132 位のメトキシカル ボニル基を失った化合物群)などの光毒性化合物も少 なからず検出されることがある^{20,21)}。このように、シ クロエノール類への代謝は、被子植物の紅葉過程にお ける PAO 経路とは異なり、光毒性の副産物を生じる 多少のリスクを伴うと思われる。じっくりと時間をか けて細胞死を誘導できる紅葉などの過程と異なり、微

細藻類の消化においては、速やかに大量のクロロフィ ルを処理する必要があるため、多少のリスクを伴って でもシクロエノール代謝のような迅速な反応が有利 である²⁾。実際には、消化が進行した微細藻類の残骸 は食胞内で典型的に消光しており(クロロフィル蛍光 が無い状態)、この状態では光毒性の問題は回避でき ていると考えられる。ヒドロキシクロロフィロン類や パイロフェオフィチン類は、シクロエノール類と同様 に低極性でかつ平面性が高いため、π-π相互作用によ りスタッキング構造を形成することによりシクロエ ノール類へのエネルギー移動を経由した励起エネル ギーを緩和が起こるか、あるいはアモルファスな凝集 を起こすことで消光しているものと推測される²⁾。い ずれにせよ、生物にとってはこの代謝によってクロロ フィルの光毒性が現実に回避できている事実が重要 であろう(プロティストは完璧なシクロエノール代謝

の設計図を志向して進化したのではなく、紆余曲折の 帰結として「うまくいっている」のである)。

クロロフィルの光毒性を喪失させる分解代謝プロ セスは、PAO 経路やシクロエノール代謝のほかにも存 在するものと想像される。特に、光照射下で多様な微 生物間の相互作用が起こる水圏の表層環境において は、多様な対クロロフィル光毒性戦略が存在しても不 思議ではない。にもかかわらず、シクロエノール類が あらゆる水圏環境から普遍的に検出される事実は、こ の代謝が水圏生態系において主要なプロセスである ことを示唆する。より具体的には、シクロエノール代 謝を行なう微細藻類食プロティストが、水圏の食物網 の基底において量的に重要な役割を果たしているこ とを示すものである²⁰⁾。

5. 真核生物の進化とクロロフィルの光毒性

さて著者らは、微細藻類食のプロティストのうちで シクロエノール代謝を行なう生物は、現在認識されて いる真核生物の 8 つのスーパーグループ(オピストコ ンタ、アメボゾア、リザリア、アルベオラータ、スト ラメノパイル、クロミスタ、アーケプラスチダ、エク スカバータ)のうちの4つ(リザリア、アルベオラー タ、ストラメノパイル、クロミスタ)にまたがって分 布することを報告してきた²⁰⁾。その後の研究で、エク スカバータでも微細藻類の捕食に伴うシクロエノー ル代謝が確認され²⁹⁾、未公表データではあるがオピス トコンタに属するプロティストでもシクロエノール 代謝を行なっている可能性が示されている。つまり、 シクロエノール代謝は、真核生物うち、進化的関係を 辿れないほど非常に広範なグループに共有されてい るのである(図7)。

一方、同じ 2012 年の論文中²⁰⁾で、藻類を捕食する オピストコンタに分類されるプロティストについて、 シクロエノール代謝はおろか、クロロフィルの本質的 な代謝分解の形跡すら確認できない事例も報告した。 また、微細藻類食のアメボゾアに関しては、著者らは シクロエノール類の産生を未だに確認していない。ア ルベオラータに属する繊毛虫の一部でも、シクロエノ ールの産生が確認できていない。このように、シクロ エノール代謝生物が確認される同一のスーパーグル ープ内でも、この代謝を行わない生物が存在している。 従って、シクロエノール代謝の進化に関しては、次の 二通りの仮説が立てられ得る。すなわち、(1) 真核 生物の共通祖先においてシクロエノール代謝が獲得 されたが、いくつかのグループでは二次的に失われた、 あるいは(2) 複数の系統群で独立にシクロエノール 代謝が成立した(収斂現象)、というものである。シ クロエノール代謝は比較的シンプルな反応であるた

め後者の可能性は否定できないが、もし前者が真であ れば、これは非常に興味深い。つまり、光が存在する 環境、つまり微細藻類が増殖している現場での直接捕 食によりエネルギーを獲得するという、非常に有利な 生き方を可能にしたことが、真核生物のその後の成功 を決定づけたのかもしれない。

仮に、原初の真核生物がシクロエノール代謝を武器 として微細藻類の捕食をはじめたとすると、その微細 藻類とはすなわち酸素発生型の光合成原核生物であ るシアノバクテリアであったに違いない。そうでなく とも、別な対クロロフィル光毒性戦略を獲得すること で、シアノバクテリアを細胞内に取り込む生態が進化 の早い段階で進化したはずである。その帰結として、 光合成を営む真核生物である植物が成立した。厳密に は「光栄養性の真核生物」と称されるべき生物の基本 体制には、シアノバクテリア細胞に起源する色素体が 存在する。そのうち緑色植物(陸上植物を含む)、紅 色植物、灰色植物の3つのグループは「一次植物」と 称され、真核生物のスーパーグループの一つであるア ーケプラスチダを構成している(図 7)³⁰⁾。アーケプ ラスチダの共通祖先で一度だけシアノバクテリアの 細胞内共生から色素体が成立したと考えられている が、最近ではアーケプラスチダの単系統性に疑義を挟 む意見もある³¹⁾。

これらに対して、一次植物である緑色植物ないし紅 色植物のいずれかを細胞内に取り込んで色素体化し た生物は「二次植物」と称される。珪藻類、円石藻類、 渦鞭毛藻類をはじめとして、現在の海洋における主な 光合成基礎生産者の多くは二次植物である。いずれに せよ、ともすれば光毒性分子の詰まった「爆弾」たり 得る微細藻類を細胞内に安全に維持する段階が、これ ら植物化の進化の途上で必須であったはずである。つ まり、真核生物はその植物化に先んじて、クロロフィ ルの光毒性を制御する仕組み ― おそらくは光合成 生物を補食するためのプロセス — を獲得しなけれ ばならなかったであろう。実際、興味深いことに、こ れまでにシクロエノール代謝が確認されたプロティ ストが属する分類群から、典型的に二次植物が進化し ていることが分かってきた(その逆もある程度しか り)。

さらに、二次植物化した渦鞭毛藻類や光栄養性のユ ーグレノイド類でも、細胞内でシクロエノールを産生 することが報告されている^{29,32,33}。この自発的な産生 現象の生理学的な意義は今後慎重に検証される必要 があるが、少なくともユーグレノイドに関しては、色 素体を獲得していない同一分類群の祖先的なグルー プが微細藻類の捕食に伴うシクロエノール代謝が確 認されている(図 7)。二次共生の進化過程で、これ らの代謝に関わる酵素(群)を維持し続けたことが、 クロロフィルによる光毒性を制御し、色素体獲得を導 いたのかもしれない。

なお、アーケプラスチダの単系統性を認めれば、微 細藻類食のアーケプラスチダ生物が存在しないため シクロエノール代謝など捕食に伴う対クロロフィル 光毒性戦略との関連を論じることは、現状では困難で ある。しかし、例えば Kamikawa et al.³¹⁾で示された系 統樹を受け入れるとすれば、Kashiyama、Yokoyama et al.²⁰⁾でシクロエノール代謝を報告した Centrohelida(有 中心粒類太陽虫)は紅色植物の姉妹群に属することに なり、議論の余地が出てくる。今後、シクロエノール 代謝に関わる酵素が特定され、そのタンパク質のアミ ノ酸配列や特徴的なモチーフなどの構造情報、あるい は遺伝子の塩基配列などの情報が揃えば、真核生物を 繁栄せしめた進化の過程の、重要な一端を垣間見るこ とができるものと期待される。

6. おわりに

地球という、液体の水にあふれ適度な太陽光(その 強度だけでなく有機分子のπ軌道と相互作用しうる スペクトル領域範囲にあることが重要)を受ける、穏 やかな惑星の表層を「征した」生命の仕組みは、まず はクロロフィルを用いた光合成であったであろう。さ らに、水を電子供与体とした電子伝達を駆動する酸素 発生型の光合成の登場は、地球生命圏のエネルギーフ ラックスを激変させたに違いない。本稿では、これら の仕組みがクロロフィルの光毒性が回避される仕組 みの裏打ちの元に成立していることを説明した。この 「クロロフィル光毒性を制する」仕組みは、偶然の変 異の積み重ねから進化・成立したものであろうが、そ の機構自体は偶然ではなく、物理化学的な必然に帰す る。光合成の初期反応におけるクロロフィルの役割は、 必然的にクロロフィルの光毒性回避の機構として機 能する。クロロフィルの光毒性は、自然選択を制約す る因子としては比較的重大な部類に入るであろう。

「クロロフィルの光毒性を制御するための仕組みが 既存の電子伝達系と接続することで光合成の初期過 程が成立した」、これはずいぶんな妄想かもしれない が、光合成という仕組みに向かって自発的に進化した と考えるよりは合理的ではなかろうか。しかしこの場 合、原初の生命において、クロロフィルはそもそもど のような機能を担っていたのだろうか?

原初、「クロロフィルを制した」酸素発生型の光合 成生物は、地球表層環境においては無敵の支配者であ ったのではなかろうか。光毒素であるクロロフィルを 大量に含有する以上、「クロロフィルを制する」すべ を持たない他の生物にとっては有毒生物にほかなら ず、光合成の産物に与るためには、溶菌した光合成生 物の内容物が十分にブリーチされるのを待つか、光の 届かない海洋深部にまで沈降してくるのを待つほか なかったであろう。そうであれば、リミネラリゼーシ ョン (無機化による栄養塩の再生) に律速を受ける生 物生産のターンオーバーは抑制され、太陽光から生命 システムに流入するエネルギーのフラックスもそう 大きくはならなかったかもしれない。現実には地球史 のどこかで、「クロロフィルを制する」仕組みを備え て、光合成生物を in situ で捕食・消化分解できる真核 生物が、海洋表層の光環境の征服者として登場した。 これにより光合成の産物は効率よくターンオーバー を受け、太陽光から生態系に流れるエネルギーフラッ クスは増大し、また、そうした捕食生物から連なる食 物網が拡大したであろう。

一次植物や二次植物などの植物化した真核生物の 登場は、地球生命圏に大きな変化をもたらしたのであ ろう。茫洋たる大海原ではほとんど有効な移動手段を 持たないシアノバクテリアに代わって、基本的なデザ インとして鞭毛遊泳性であるプロティストが植物化 したことは、まずもって光合成生産の空間的制約を大 きく解放した。細胞壁を発達させた緑藻の仲間は、さ らに陸上環境にも光合成の仕組みを進出させた。シア ノバクテリアを共生させた一次植物の進化と、一次植 物を取り込んだ二次植物の進化では、何か本質的な違 いが存在するのか。クロロフィルの制御に関してはど うなっていたのか。中生代以降の二次植物の進化が海 洋生態系の構造や物質循環に与えた影響は相当なも のであろうと考えられる。特に、無機塩からなる鱗片 や骨格を有する浮遊性のプロティストの登場(円石藻 や珪藻、微細藻を共生させた浮遊性有孔虫など)により、海洋表層で産生された有機物の深海底への輸送効率は飛躍的に大きくなったと考えられる(バイオミネラルによるバラスト効果)³⁴⁾。この大きな転換においても、細胞スケールでのクロロフィル制御機構の進化が関わっていたのであれば面白いものである。

謝辞

以下の文献に名前を記載させていただいた共同研 究者に深い感謝の意を申し述べます。特に、顕微鏡写 真を提供いただいた筑波大学の白鳥峻志さんにお礼 申し上げます。また、今回、本稿の執筆の機会をいた だいた園池公毅博士、鞆達也博士に感謝致します。

Received March 23, 2015; Accepted April 2, 2015

参考文献

- Blankenship, R. E. (2014) Molecular Mechanisms of Photosynthesis, 2nd Ed., Wiley Blackwell, Oxford, UK.
- Kashiyama, Y., and Tamiaki, H. (2014) Risk management by organisms of the phototoxicity of chlorophylls, *Chem. Lett.* 43, 148–156.
- Tamiaki, H., and Kunieda, M. (2011) Photochemistry of chlorophylls and their synthetic analogs, *Handbook of Porphyrin Science 11*, 223–290.
- Montalti, M., Credi, A., Prodi, L., and Gandolfi, M. T. (2006) *Handbook of Photochemistry, 3rd Ed.*, CRC Press, Boca Raton, USA.
- Springett, R., and Swartz, H. M. (2007) Measurements of oxygen in vivo: overview and perspectives on methods to measure oxygen within cells and tissues, *Antioxid. Redox Signal.* 9, 1295– 1301.
- Firey, P. A., Jones, T. W., Jori, G., and Rodgers, M. A. J. (1988) Photoexcitation of zinc phthalocyanine in mouse myeloma cells: the observation of triplet states but not of singlet oxygen, *Photochem. Photobiol.* 48, 357–360.
- Skovsen, E., Snyder, J. W., and Lambert, J. D. C., and Ogilby, P. R. (2005) Lifetime and diffusion of

singlet oxygen in a cell, J. Phys. Chem. B Lett. 109, 8570-8573.

- Oba, T., and Tamiaki, H. (2005) Effects of peripheral substituents on diastereoselectivity of the fifth ligand binding to chlorophylls, and nomenclature of the asymmetric axial coordination sites, *Bioorg. Med. Chem. 13*, 5733–5739.
- Saito, K., Umena, Y., Kawakami, K., Shen, J.-R., Kamiya, N., and Ishikita, H. (2012) Deformation of chlorin rings in the photosystem II crystal structure, *Biochemistry* 51, 4290–4299.
- Demmig-Adams, B., Gilmore, A. M., and Adams III,
 W. W. (1996) In vivo functions of carotenoids in higher plants, *FASEB J. 10*, 403–412.
- Croce, R., Weiss, S., and Bassi, R. (1999) Carotenoid-binding sites of the major light-harvesting complex II of higher plants, *J. Biol. Chem.* 274, 29613–29623.
- Loll, B., Kern, J., Zouni, A., Saenger, W., Biesiadka, J., and Irrgang, K.-D. (2005) The antenna system of Photosystem II from *Thermosynechococcus elongatus* at 3.2 Å resolution, *Photosynth. Res.* 86, 175–184.
- Mozzo, M., Dall'Osto, L., Hienerwadel, R., Bassi, R., and Croce, R. (2008) Photoprotection in the antenna complexes of photosystem II: role of individual xanthophylls in chlorophyll triplet quenching, *J. Biol. Chem. 283*, 6184–6192.
- Müh, F., Renger, T., and Zouni, A. (2008) Crystal structure of cyanobacterial photosystem II at 3.0 Å resolution: a closer look at the antenna system and the small membrane-intrinsic subunits, *Plant Physiol. Biochemistry* 46, 238–264.
- Kräutler, B., Jaun, B., Bortlik, K.-H., Schellenberg, M., and Matile, P. (1991) On the enigma of chlorophyll degradation: The constitution of a secoporphinoid catabolite, *Angew. Chem. Int. Ed. Engl. 30*, 1315–1318.
- Hörtensteiner, S., and Kräutler, B. (2011) Chlorophyll breakdown in higher plants, *Biochim. Biophys. Acta 1807*, 977–988.

- Tanaka, R., Kobayashi, K., and Masuda, T. (2011) Tetrapyrrole Metabolism in *Arabidopsis thaliana*, *The Arabidopsis Book 9*, e0145.
- Erzinger, G. S., Wohllebe, S., Vollrath, F., Souza, S. C., Richter, P., Lebert, M., and Häder, D.-P. (2011) Optimizing conditions for the use of chlorophyll derivatives for photodynamic control of parasites in aquatic ecosystems, *Parasitol. Res. 109*, 781–786.
- Yano, S., Hirohara, S., Obata, M., Hagiya, Y., Ogura, S., Ikeda, A., Kataoka, H., Tanaka, M., Joh, T. (2011) Current states and future views in photodynamic therapy, *J. Photochem. Photobiol. C: Photochem. Rev. 12*, 46–67.
- Kashiyama, Y., Yokoyama, A., Kinoshita, Y., Shoji, S., Miyashita, H., Shiratori, T., Suga, H., Ishikawa, K., Ishikawa, A., Inouye, I., Ishida, K., Fujinuma, D., Aoki, K., Kobayashi, M., Nomoto, S., Mizoguchi, T., and Tamiaki, H. (2012) Ubiquity and quantitative significance of detoxification catabolism of chlorophyll associated with protistan herbivory, *Proc. Natl. Acad. Sci. U.S.A. 109*, 17328–17335.
- Kashiyama, Y., Yokoyama, A., Shiratori, T., Inouye, I., Kinoshita, Y., Mizoguchi, T., and Tamiaki, H. (2013) 13²,17³-Cyclopheophorbide *b* enol as a catabolite of chlorophyll *b* in phycophagy by protists, *FEBS Lett.* 587, 2578–2583.
- Falk, H., Hoornaert, G., Isenring, H. P., and Eschenmoser, A. (1975) Enol derivatives in the chlorophyll series. Preparation of 13²,17³-cyclopheophorbide enols, *Helv. Chim. Acta* 58, 2347–2357.
- Isenring, H. P., Zass, E., Smith, K., Falk, H., Luisier, J. L., and Eschenmoser, A. (1975) Enol derivatives in the chlorophyll series. 13²-Desmethoxycarbonyl-17³-desoxy-13²,17³-cyclochlorophyllide *a*-enol and a method for the introduction of magnesium into porphinoid ligands under mild conditions, *Helv. Chim. Acta* 58, 2357–2367.
- 24. Scheer, H., and Katz, J. J. (1978) Peripheral metal complexes: chlorophyll "isomers" with magnesium bound to the ring E β -keto ester system, *J. Am. Chem. Soc. 100*, 561–571.

- Shiratori, T., Yokoyama, A., and Ishida, S. (2014) Phylogeny, ultrastructure, and flagellar apparatus of a new marimonad flagellate *Abollifer globosa* sp. nov. (Imbricatea, Cercozoa), *Protist 165*, 808–824.
- Louda, J. W., Loitz, J. W., Rudnick, D. T., and Baker,
 E. W. (2000) Early diagenetic alteration of chlorophyll-a and bacteriochlorophyll-a in a contemporaneous marl ecosystem; Florida Bay, Org. Geochem. 31, 1561–1580.
- Goericke, R., Strom, S. L., and Bell, M. A. (2000) Distribution and sources of cyclic pheophorbides in the marine environment, *Limnol. Oceanogr.* 45, 200– 211.
- Khalesi, M., and Louda, J. W. (2011) Hemisynthesis of 13²,17³-cyclomesopheophorbide-*a*-enol, *Tetrahedron Lett. 52*, 1078–1081.
- Kashiyama, Y., Yokoyama, A., Shiratori, T., Kawaguchi, A., Nakazawa, M., Inouye, I., and Tamiaki, H. (2013) Chlorophyll detoxification catabolism of euglenoids that enabled acquisition of the secondary plastid, *International Congress of Protistology (ICOP XIV; 2013)*, Vancouver, Canada.
- Adl, S. M., Simpson, A. G., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., Bowser, S. S., et al. (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists, *J. Eukaryotic Microbiol.* 52, 399–451.
- Kamikawa, R., Kolisko, M., Nishimura, Y., Yabuki,
 A., Brown, M. W., Ishikawa, S. A., Ishida, K., Roger,
 A. J., Hashimoto, T., and Inagaki, Y. (2014) Gene

content evolution in discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of *Tsukubamonas globosa*, *Genome Biol. Evol.* 6, 306–315.

- Yamada, N., Tanaka, A., and Horiguchi, T. (2014) cPPB-*a*E is discovered from photosynthetic benthic dinoflagellates, *J. Phycol.* 50, 101–107.
- 33. Suzuki, T., Casareto, B. E., and Shioi Y. (2015) Finding of 13²,17³-cyclopheophorbide *a* enol as a degradation product of chlorophyll in shrunk zooxanthellae of the coral *Montipora digitata*, *J. Phycol.* 51, 37–45.
- Kashiyama, Y., Ozaki, K., and Tajika, E. (2011) Impact of the evolution of carbonate ballasts on marine biogeochemistry in the Mesozoic and associated changes in energy delivery to subsurface waters, *Paleontol. Res.* 15, 89–99.
- 35. 柏山祐一郎,横山亜紀子(2012)光エネルギーと 従属栄養プロティストークロロフィル光毒性に 対する生化学的戦略,生物の科学 遺伝 2012年7 月号,425-431.
- Yabuki, A., and Tame, A. (2014) Phylogeny and Reclassification of *Hemistasia phaeocysticola* (Scherffel) Elbrächter & Schnepf, 1996, *J. Eukaryot. Microbiol.*, in press.
- 37. 福田あずみ,石田健一郎 (2014) 新奇 Heliozoa SRT127 株の分類学的研究, *Tsukuba J. Biol. 13*, 13.

Successful Management of the Phototoxicity of Chlorophylls Had Led the Evolutionary Successes in Earth's Illuminated Surface Environments

Yuichiro Kashiyama^{1,2,3,*}, Akiko Yokoyama⁴ and Hitoshi Tamiaki³

¹Graduate School of Engineering, Fukui University of Technology, ²Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), ³Graduate School of Life Sciences, Ritsumeikan University, ⁴Faculty of Life and Environmental Sciences, Tsukuba University

報告記事

若手の会活動報告 ~第 11 回セミナーの開催~

立命館大学 生命科学部 生命情報学科 浅井 智広

いつもの 4 月号の会報では、本会年会の後の次回セミナーの開催に向けた準備状況をご連絡しているところで すが、今回は例年秋に開催している合宿形式のセミナーを 12 月号の会報発行後に開催したため、その若手の会セ ミナーの様子を報告させていただきます。

若手の会の中心的な活動である研究セミナーは今回で11回目を数えます。今回は、2014年12月6日と7日の 二日間の日程で、立命館大学びわこ・くさつキャンパスの一画にあるセミナーハウス「エポック立命21」で開催 しました。例年秋に開催しているセミナーは合宿形式で行い、講演や発表を通じたフォーマルな情報交換だけで なく、身分や立場に依らない若手研究者間のフランクでディープな交流を目指しています。今回は、恒例の全員 参加の自己紹介と研究紹介に加え、夕食を兼ねた懇親会を参加者全員で網をつつき合うBBQ形式で行いました。

招待講演では学生による特別講演を含めて4名の講師の方々をお招きし、最新の研究成果を中心に話題を提供 していただきました。初日は立命館大学生命科学部の高橋文雄先生に藻類の青色光受容体についてお話しを伺い ました。非モデル生物で新しい光受容体を発見していく過程を通じて、ポストゲノム時代にあっても生理現象と その責任分子の対応を丁寧に観察して調べていくことの大切さを学ぶことができました。二日目はまず、基礎生 物学研究所の高橋俊一先生にサンゴと褐虫藻の光合成の関係についてお話しいただきました。光合成の研究を始 めたばかりの若手研究者にはとっつきにくい印象もある光阻害について、ご自身の研究成果を交えながらわかり やすくご解説いただきました。また、サンゴと褐虫藻の共生関係が成立していくメカニズムについての最新の研 究成果もご紹介いただき、大変興味深い話題を提供して下さいました。次に、大阪大学蛋白質研究所の山本治樹 先生にクロロフィルの生合成系で働くニトロゲナーゼ類似酵素についてのお話しを伺いました。ニトロゲナーゼ に似た構造をもつ DPOR や COR といった酵素の生化学的な研究から見えてきた、ニトロゲナーゼ類似酵素の構造 や機能の多様化についてご紹介いただきました。また、ご自身のこれまでの経験を題材に、若手研究者を対象と したキャリアパスについてもお話しいただき、学生が今後の研究生活について考える良い機会となりました。最 後に、立命館大学大学院博士後期課程1回生の大山克明さんにご自身の研究について紹介していただきました。 若手の会では昨年の秋のセミナーから「学生招待講演」と題して、将来光合成研究の最前線で活躍することが期 待される学生が自身の研究内容を発表する場を設けています。大山さんはシアノバクテリアの生物時計を生化学 的に研究されています。生物時計自体は光合成と直接関係しないにも関わらず、細胞全体の生理現象を通じて光 合成と深く結びついており、光合成研究の別な側面を紹介して下さいました。参加した学生の刺激となっただけ でなく、ポスドク以上の若手研究者にも光合成研究の新たな広がりを知る良い機会となったと思います。詳しい セミナーの様子は、大山さんに執筆していただいた参加報告記事をご覧ください。

若手の会では、実年齢や身分、所属を問わず、多くの研究者の方々の積極的な参加を歓迎します。現場の研究 を推進している研究者が若い気持ちで交流することは、学際性の強い光合成研究では絶対不可欠だと思います。 この記事を読んでいただいた先生方には、ご自身の参加はもちろんのこと、ご指導されている学生さんやポスド クの方に若手の会への参加を是非お勧めいただきたいと思います。セミナーでの学生招待講演は今後も継続して 企画していく予定ですので、こちらについても自薦他薦問わず、お気軽に候補者をご連絡いただければ幸いです。 その他ご不明な点など、遠慮無く浅井 (cazai@fc.ritsumei.ac.jp) までお問い合わせください。興味を持たれた方は、 お気軽にご参加ください。

報告記事

「第 11 回 日本光合成学会若手の会セミナー」で経験した事

立命館大学院 生命科学研究科 D1

大山 克明

2014 年 12 月 6・7 日に立命館大学 びわこ・くさつキャンパスで第 11 回日本光合成学会若手の会が開催されました。私は学部 4 回生の時に初めて光合成学会若手の会に参加させて頂き,今回で 2 回目の参加になります。M1, M2 の時も参加させてもらいたかったのですが,機会に恵まれず,叶いませんでした。今回念願の参加が叶い,さらに,学生招待講演という形で自分の研究を紹介する機会も頂きました。当日の個人的な経験を含めて,出来事を紹介させて頂きたいと思います。

8月初旬に浅井智広先生から講演依頼のお話がありました。第9回の若手の会で京都大学の横山諒さんが学生招 待講演をされてから、学生に経験をつけてもらうことを目的に研究内容を紹介してもらっているそうです。名立 たる先生方の前で長時間発表させてもらう滅多にないチャンスだったので、是非と引受けさせて頂きました。

初日は浅井先生の挨拶に始まり、立命館大学の高橋文雄先生の「フシナシミドロの青色反応とその受容体について」から幕を開けました。普段から隣の研究室におられるにも関わらず、研究内容を存じ上げてなかったので 新鮮な気持ちでお話を伺いました。しかしながら、BBQの準備や翌日のお弁当の手配等雑務に追われ、ゆっくり とお聞きする事ができませんでした。高橋先生の次に口頭発表で1人20分、質疑応答10分の一般研究発表があ りました。残念ながらこの時もゆっくりとお聞きする事は出来ませんでしたが、皆さんの活発な質疑応答と自分 の発表が近づいてくる事に徐々に緊張してきました。

一般研究の後,入念に準備をおこなった BBQ が始まりました。あいにく,気温は非常に寒く缶ビールも氷にい れなくても十分に冷える気温でした。寒い中でもみなさん火の近くに集まり暖をとりながら研究の事やご自身の 経験を熱く語ってくださいました。

BBQ の後は恒例の参加者全員による自己紹介が始まりました。研究の話やご自身の趣味のことなど個性的な紹介がたくさんありました。お酒が入っているにも関わらず,研究の話になると深いディスカッションになるあたりに,皆さんが優れた研究者であることを感じました。また,同じような実験をしている方々との情報交換も非常に有意義で,あっという間に時間が過ぎてしまいました。

翌日最初の講演は基礎生物学研究所の高橋俊一先生が「光阻害とサンゴの白化」についてお話してくださいま した。サンゴは高温ストレスに曝れされる褐虫藻との共生関係が崩れ白色化します。サンゴの白化の前に褐虫藻 の光阻害が起きることや光阻害感受性の高い褐虫藻をもつサンゴでは白化が起こりやすいことに驚きを感じまし た。

次の講演は蛋白質研究所の山本治樹先生が「光合成色素合成に関わるニトロゲナーゼ類似酵素」についてお話 してくださいました。プロトクロロフィリド還元酵素である DPOR や LPOR のお話は山本先生が名古屋大学にお られた時にお聞きした事がありましたが、そこからさらにクロロフィリド還元酵素である COR の詳しいお話も聞 け、とても面白かったです。阪大の栗栖研究室においてある嫌気チャンバーが横に連なっている写真がとても印 象的でした。

最後に、学生招待講演という形でシアノバクテリアのKaiCタンパク質について最近分かってきた新たな性質に ついて報告させて頂きました。シアノバクテリアは体内時計をもつ最も単純な生物として知られており、その体 内時計は3つのタンパク質KaiA,KaiB,KaiCによって構成されています。私は寺内先生と浅井先生の指導のも と、体内時計がどのようなメカニズムで動いているか解明したく研究しています。光合成分野から少し離れた話 でしたが、質疑応答では、多くの方から非常に重要な質問をして頂き、とても有益な時間を過ごす事ができまし た。自分としても別分野の方の意見やアドバイスを聞けて大変楽しかったので、是非とも次回以降もこのような
企画を続けて頂き、学生に機会を与えて頂きたいです。

次回以降も若手の会に参加させて頂きたいと思っております。最後になりましたが、今回のセミナーを企画し てくださり、私を招待してくださった浅井智広先生とはじめとする若手の会幹事の皆様にこの場をお借りして深 く御礼申し上げます。」

報告記事

The German-Japanese Binational Seminar 2015: Harvesting Light: from Light to Biotechnological Products に参加して

埼玉大学 大学院理工学研究科 鬼沢 あゆみ

静岡県熱海市で2015年3月21日から26日までの5日間、部屋からオーシャンビューが臨める高台にあるホテルで、日本人とドイツ人研究者による二国間セミナーが開催されました。今回、日原由香子先生がオーガナイザーだったため、私はポスターセッションに参加する以外にも会場の進行等のお手伝いもさせて頂きました。

この日独二国間セミナーは2001年岡崎で第1回目が開催されてから今回で7回目のセミナーになります。今回 セミナー中に第1回の発足に関わった村田紀夫先生のお話を聞く機会もあり、こんなにこの規模のセミナーが続 くのは大変珍しいと喜んでおられたのが印象的でした。セミナー初日はディナーのみでしたが、ちょうどルフト ハンザ航空でストライキが行われている時期だったため、ドイツ人の先生方が全員無事に到着してほっとしまし た。2日目は朝から夜までずっとオーラルの発表でした。1つのセッション内でもシアノバクテリアから真核藻類、 高等植物まで様々な光合成生物を対象に研究する先生方の話を聞いていたので、光合成生物の中でどれだけメカ ニズムが保存され、どこからが違うのかがより明確に分かるような構成で、一つ一つの発表ごとに活発な議論が 行われていました。これは終日言えることですが、クローズドの学会であるためアンパブリッシュなデータも多 くあり、刺激的な一日となりました。3日目は午前のセミナーの後、午後から皆で箱根に excursion に行きました。 個性的なガイドさんに連れられてバスで移動し、ロープウェイに乗り、芦ノ湖をクルーズ後に大涌谷、箱根関所 に行くという、とても濃厚な半日でした。大涌谷ではドイツ人も日本人も皆で顔をしかめるほどの異臭と噴煙で したが、少し曇りがちでも見えた富士山を背景に記念写真を撮っていたドイツ人もいて、皆満足そうな顔をして いて良かったです。4日目は光合成活性やストレス応答の制御などのベーシックなものから small RNA による制御、 非モデル生物を扱う研究まで、ここでは書ききれないほどの多岐に渡る分野の発表を聞くことができました。こ の日はポスターセッションがあり、セッション前に1分間自分のポスターについて紹介する機会も頂けました。 ポスターはオーラル発表をしている会議室内に貼っていたので、セッションタイム以外でもコーヒーを飲みなが ら気軽にディスカッションする機会が多くあったのは自分にとって、とても有益でした。5日目はバイオマスやバ イオ燃料などの応用研究についてのセッションがメインであり、アプローチ法は元より、日本とドイツの研究施 設の規模などの違いが写真を見ることで分かって興味深かったです。この日のセミナーは夕方に終わり、少し観 光を楽しんだ後に、皆で熱海駅前の居酒屋さんで夕食を食べました。最終日は一部のドイツ人は朝方に熱海を発 ちましたが、ドイツ人の多くは熱海を観光してから帰ることができたようで良かったです。最後になりましたが、 今回会場進行等のお手伝いをする中で、日本人の先生方に随所でご協力いただきました。また本稿を執筆する機 会を与えて頂きました西山佳孝先生、写真を提供頂きました田中寛先生にこの場をお借りして感謝申し上げます。

集会案内

第23回「光合成セミナー2015:反応中心と色素系の多様性」の開催案内

- 期日: 2015年(平成 27年)7月11日(土)午後2時から7月12日(日)午後4時まで
- **場所:** 龍谷大学大宮キャンパス(JR 京都駅より約 10 分) (http://www.ryukoku.ac.jp/about/campus traffic/traffic/t omiya.html)
- 開催の目的: 光合成に関して、物理学、化学、生物学を融合した討論を行う。光合成の進化、物質変換、人工 光合成などについても討論する。第一線の研究者に最新のトピックを解説していただくとともに、 参加者の口頭・ポスター発表を行う。

- 協賛 日本光合成学会
- **共催** 龍谷大学革新的材料・プロセス研究センター

内容:

- 2. 口頭発表 (討論を含めて一人 10 分から 20 分を予定)
- 3. ポスター発表 (3分程度のポスタープレビューも併せて行う)

申込:

- 発表申し込み締め切り 2015年(平成27年)7月3日(金) 参加申し込み締め切り 2015年(平成27年)7月3日(金)
- 参加費: (7月11日の懇親会費、7月12日の昼食代を含む)
 - 一般 5,000 円 (予定)
 - 学生 3,000 円 (予定)
- **世話人:** 秋本誠志(神戸大学)、大岡宏造(大阪大学)、大友征宇(茨城大学)、出羽毅久(名古屋工業大学)、永島賢治(神奈川大学)、宮武智弘(龍谷大学)
- 申し込み・問い合わせ先:

龍谷大学理工学部物質化学科 宮武智弘

(e-mail: miyatake@rins.ryukoku.ac.jp, tel: 077-543-7467, fax: 077-543-7483)

プログラムおよび今後の案内は下記ホームページにて、更新情報を随時、掲載いたします。

http://www.bio.sci.osaka-u.ac.jp/~ohoka/photosyn_seminar_2015/top.html

その他:光合成生物の進化も含めた光反応・色素系の基礎から応用までを幅広く議論し、異分野の学生・研究者 が楽しく交流できる場を提供していきたいと考えています。また新しい研究テーマや方向性のヒントが得られる ことも期待しています。今後の運営・内容等に関してご意見等がありましたら、遠慮無くメール(上記メールア ドレス宛)をいただければ幸いです。

集会案内

「International Meeting "Photosynthesis Research for Sustainability 2015"」の開催案内

期日: 2015年9月21-26日

場所: ギリシャ、クレタ島

2014年に、ロシア・モスクワ郊外の Pushchino で開催された前回の会議に引き続き、本年9月21-26日にギリシ ャのクレタ島にて上記会議が催されます。本国際会議は2004年にカナダ、ケベック州 Trois-Rivières で "In honor of Norio Murata (村田先生の名誉を讃える記念)"として行われたのを原点としていることから毎回多数の日本からの 参加者があり、近年は毎回 Young Talent 賞・Poster 賞を受賞しています。今回も多くの方々にご参加、ご発表いた だき、活発なディスカッションができますようにお願い申し上げます。

要旨〆切:7月15日

セッション:

- 1. Primary Processes of Photosynthesis
- 2. Structure, Function and Biogenesis of the Photosynthetic Apparatus
- 3. Photosystem II and Water Oxidation Mechanism
- 4. Energy Transfer and Trapping in Photosystems
- 5. Photosystem I and Bacterial Photosynthesis
- 6. Carbon Fixation (C3 and C4) and Photorespiration
- 7. Artificial Photosynthesis for Hydrogen and Carbon-based Solar Fuels
- 8. Regulation of Photosynthesis and Environmental Stress
- 9. Systems Biology of Photosynthesis: Integration of Genomic, Proteomic, Metabolomic and Bioinformatic Studies
- 10. Applied aspects of Photosynthesis: BioH2 and Bioelectricity
- 11. Emerging Techniques for Studying Photosynthesis

詳しくはウエブサイト (http://photosynthesis2015.cellreg.org/) をご覧下さい。

鞆 達也(東京理科大)

事務局からのお知らせ

★入会案内

本会へ入会を希望される方は、会費(個人会員年会費:¥1,500、賛助法人会員年会費:¥50,000) を郵便振替(加入者名:日本光合成学会、口座番号:00140-3-730290)あるいは銀行振込(ゆうちょ銀 行、019店(ゼロイチキュウと入力)、当座、0730290 名前:ニホンコウゴウセイガッカイ)にて送 金の上、次ページの申し込み用紙、または電子メールにて、氏名、所属、住所、電話番号、ファック ス番号、電子メールアドレス、入会希望年を事務局までお知らせください。

★会費納入のお願い

学会の運営は、皆様に納めていただいております年会費によりまかなわれております。当該年度の 会費が未納の場合、光合成研究が送られてくる封筒に、会費未納が印字されています。ご都合のつく ときに、会費を納入ください。1年間会費を滞納された場合、次年度よりお名前が会員名簿から削除 され、光合成研究は届かなくなります。再入会される場合は、未納の分もあわせてお支払いいただき ます。会費納入状況などにつきましては、ご遠慮なく事務局(shikanai@pmg.bot.kyoto-u.ac.jp)までお 問い合わせください。会員の皆様のご理解とご協力をお願い申し上げます。

日本光合成学会会員入会申込書

平成 年 月 日

```
日本光合成学会御中
```

私は日本光合成学会の趣旨に賛同し、平成 年より会員として入会を申し込みます。

[]内に会員名簿上での公開承諾項目に〇印をつけてください

- [] 氏名(漢字)(必須)氏名(ひらがな)氏名(ローマ字)
- [] 所属
- [] 住所1
- Ŧ

[] 住所2(自宅の方または会誌送付先が所属と異なる場合にのみ記入)

- Ŧ
- [] TEL1
- [] TEL2 (必要な方のみ記入)
- [] FAX
- [] E-mail

個人会員年会費1,500 円(会誌、研究会、ワークショップなどの案内を含む)賛助法人会員年会費50,000 円(上記と会誌への広告料を含む)

(振込予定日:平成 年 月 日)(会員資格は1月1日~12月31日を単位とします)
* 複数年分の会費を先払いで振り込むことも可能です。その場合、通信欄に(何年度~何年度分)とお書き下さい。

連絡先

〒700-8530 岡山県岡山市北区津島中 3-1-1
岡山大学 理学部生物学科
高橋裕一郎研究室内
日本光合成学会
TEL: 086-251-7861
FAX: 086-251-7876
ホームページ: http://photosyn.jp
郵便振替口座 加入者名:日本光合成学会 口座番号:00140-3-730290
銀行振込の場合 ゆうちょ銀行、019店(ゼロイチキュウと入力)、当座、0730290
名前:ニホンコウゴウセイガッカイ

日本光合成学会会則

第1条 名称

本会は日本光合成学会(The Japanese Society of Photosynthesis Research)と称する。

第2条 目的

本会は光合成の基礎および応用分野の研究発展を促進し、研究者相互の交流を深めることを目的とする。

第3条 事業

本会は前条の目的を達成するために、シンポジウム開催などの事業を行う。

第4条 会員

1. 定義

本会の目的に賛同する個人は、登録手続を経て会員になることができる。また、団体、機関は、賛助 会員になることができる。

2. 権利

会員および賛助会員は、本会の通信および刊行物の配布を受けること、本会の主催する行事に参加す ることができる。会員は、会長を選挙すること、役員に選出されることができる。

3. 会費

会員および賛助会員は本会の定めた年会費を納めなければならない。

第5条 組織および運営

1. 役員

本会の運営のため、役員として会長1名、事務局長1名、会計監査1名、常任幹事若干名をおく。役 員の任期は2年とする。会長、常任幹事は連続して二期を越えて再任されない。事務局長は五期を越 えて再任されない。会計監査は再任されない。

2. 幹事

幹事数名をおく。幹事の任期は4年とする。幹事の再任は妨げない。

3. 常任幹事会

常任幹事会は会長と常任幹事から構成され、会長がこれを招集し議長となる。常任幹事会は本会の運 営に係わる事項を審議し、これを幹事会に提案する。事務局長と会計監査は、オブザーバーとして常 任幹事会に出席することができる。

4. 幹事会

幹事会は役員と幹事から構成され、会長がこれを招集し議長となる。幹事会は、常任幹事会が提案し た本会の運営に係わる事項等を審議し、これを決定する。

5. 事務局

事務局をおき、事務局長がこれを運営する。事務局は、本会の会計事務および名簿管理を行う。

6. 役員および幹事の選出

会長は会員の直接選挙により会員から選出される。事務局長、会計監査、常任幹事は会長が幹事の中から指名し、委嘱する。幹事は常任幹事会によって推薦され、幹事会で決定される。会員は幹事を常 任幹事会に推薦することができる。 第6条 総会

- 1. 総会は会長が招集し、出席会員をもって構成する。議長は出席会員から選出される。
- 2. 幹事会は総会において次の事項を報告する。
- 1)前回の総会以後に幹事会で議決した事項
- 2) 前年度の事業経過
- 3) 当年度および来年度の事業計画
- 3. 幹事会は総会において次の事項を報告あるいは提案し、承認を受ける。
- 1) 会計に係わる事項
- 2) 会則の変更
- 3) その他の重要事項
- 第7条 会計

本会の会計年度は1月1日から12月31日までとする。当該年度の経理状況は、総会に報告され、 その承認を受ける。経理は、会計監査によって監査される。本会の経費は、会費および寄付金による。

付則

第1 年会費は個人会員1,500円、賛助会員一口50,000円とする。

第2 本会則は、平成14年6月1日から施行する。

第3 本会則施行後第一期の会長、事務局長、常任幹事にはそれぞれ、第5条に定める規定にかかわ らず、平成14年5月31日現在の会長、事務局担当幹事、幹事が再任する。本会則施行後第一期の 役員および幹事の任期は、平成14年12月31日までとする。

第4 本会則の改正を平成21年6月1日から施行する。

日本光合成学会の運営に関する申し合わせ

1. 幹事会:

幹事は光合成及びその関連分野の研究を行うグループの主催者である等、日本の光合成研究の発展に 顕著な貢献をしている研究者とする。任期は4年とするが、原則として再任されるものとする。

2. 事務局:

事務局長の任期は2年とするが、本会の運営を円滑に行うため、約5期(10年)を目途に再任されるこ とが望ましい。

3. 次期会長:

会長の引き継ぎを円滑に行うため、次期会長の選挙は任期の1年前に行う。

4. 常任幹事会:

常任幹事会の運営を円滑におこなうため、次期会長は常任幹事となる。

幹事会名簿

秋本誠志	神戸大学大学院理学研究科	園池公毅	早稲田大学教育学部
粟井光一郎*	静岡大学学術院理学領域	高市真一	日本医科大学生物学教室
池内昌彦	東京大学大学院総合文化研究科	高橋裕一郎	岡山大学大学院自然科学研究科
石北 央	東京大学大学院工学研究科	田中 歩	北海道大学低温科学研究所
泉井 桂	近畿大学生物理工学部生物工学科	田中寛	東京工業大学資源化学研究所
伊藤繁	名古屋大学	田中亮一	北海道大学低温科学研究所
井上和仁	神奈川大学理学部	民秋 均	立命館大学総合理工学院
伊福健太郎	京都大学大学院生命科学研究科	都筑幹夫	東京薬科大学生命科学部
臼田秀明	帝京大学医学部	出羽毅久	名古屋工業大学大学院工学研究科
榎並 動	東京理科大学	寺島一郎	東京大学大学院理学系研究科
得平茂樹*	首都大学東京大学院理工学研究科	徳富(宮尾)光恵	農業生物資源研究所
遠藤 剛	京都大学大学院生命科学研究科		光合成研究チーム
大岡宏浩	大阪大学大学院理学研究科	鈵 達也	東京理科大学理学部
大杉立	東京大学大学院農学生命科学研究科	仲本進	埼玉大学大学院理工学研究科
大田啓之	東京丁業大学	永鳥腎治	神奈川大学
风田石之	バイオ研究基般支援総合センター	成川 礼*	計 第 第 7 第 7 第 9 第 9 第 9 第 9 第 9 第 9 第 9 第
十五征空	茶は大学神学部	成/f 化 南谷 字	十阪市立十学十学院理学研究科
大灰仙子	八 须 八 于 庄 于 印 市 古 十 学 十 学 陀 農 学 生 会 利 学 研 空 利	用 使 「 而 田 生 郎	大阪市立八千八千九年千町九石
八岐球八 小川/伊一	米ホ八十八十元辰十二叩杆十切九杆 岡山目豊林水 産総合センター	西山生み	场工八十八十元理工十切九杆
小小山连	回田朱晨杯水産総百ピンク	四山庄夕	词玉八十八十 <u></u> 元庄二十 <u></u> 切元 中 古 十 一 亡 十 一 一 元 七 一 一 元 八 十 二 十 切 元 八 十 二 十 切 元 八 十 二 十 切 元 八 十 二 十 二 二 一 初 二 一 二 二 一 初 二 二 一 初 二 二 二 二 二 二 二 二 二 二 二 二 二
小厩卓田	生物科子明九別	野口 加 取口 五	来示八子八子阮哇子示训九杆 夕士昆士受理受研究到
小时间的	次城八子上子印生仲刀丁陵肥上子科 言如应立士堂, <u>此</u> 合理控利 <u>学</u> 研究利	野口 巧 巨公佈込	石百座八子埋子叭九杆
小体力间一	京都州立八子・土町県境料子切九枠 タナ民士営士営院生会豊営研究利	文 台 仮 伯 井	入阪入子 虽 口 貝 切 九 別
小快運労	名 古	1个 75 只	发版八子
坦 台 仮 昭 英 乙 駅 南 洪	石百座入子	百水十文	無神旭生印料子上子切先センター 北海洋上党低退到党研究託
果丁野尿信	只闻录业入子理上子即 短世工类上党工党如	原 豆 芯彦 文 七	北伊坦人子似偏杆子听先所
相田伯一郎	^協 井上耒八子上子前 はエ 」 ※	序 坝 半 欬	果北入子入子阮生印科子研九科 末式工業上送客源ル送开空手
金井龍	尚玉天子 上 <u>に</u> 十十上兴上兴应西兴西本(1)	久 · 加 · 加 · 加 · 加 · 加 · 加 · 加 · 加 · 加 ·	果泉上業大学貿源化学研究所 はエム党 ム党院理工党研究(1)
伸谷信大	大阪市立大学大学院埋学研究科	日原田香子	埼玉大字大字阮埋上字研究科 はエーツ
熊崎茂一	京都大字大字院埋字研究科 ————————————————————————————————————	檜山哲夫	埼玉大字 古框 ※ ※時 / A A ※ 正 序 A
果栖源嗣	大阪大字蛋白質研究所	福澤秀哉	京都大字大字院生命科字研究科
小池裕辛	甲央大字埋上字部	滕田祐一	名古屋大字大字院生命晨字研究科
小林止美	筑波大学大学院数理物質科学研究科	古本 強*	龍谷大学農学部
坂本 旦	岡山大学資源生物科学研究所	前忠彦	東北大学
佐賀佳央	近畿大学理工学理学科	牧野 周	東北大学大学院農学研究科
櫻井英博	早稲田大学	増田真二	東京工業大学
佐藤公行	岡山大学		バイオ研究基盤支援総合センター
佐藤直樹	東京大学大学院総合文化研究科	増田 建	東京大学大学院総合文化研究科
佐藤文彦	京都大学大学院生命科学研究科	松浦克美	首都大学東京都市教養学部
鹿内利治	京都大学大学院理学研究科	松田祐介	関西学院大学理工学部
重岡 成	近畿大学農学部	真野純一	山口大学農学部
篠崎一雄	理化学研究所植物科学研究センター	皆川 純	基礎生物学研究所
島崎研一郎	九州大学大学院理学研究院	宮下英明	京都大学大学院地球環境学堂
嶋田敬三	首都大学東京	宮地重遠	海洋バイオテクノロジー研究所
白岩義博	筑波大学生物科学系	村田紀夫	基礎生物学研究所
沈建仁	岡山大学大学院自然科学研究科	山谷知行	東北大学大学院農学研究科
杉浦昌弘	名古屋市立大学	横田明穂	奈良先端科学技術大学院大学
	大学院システム自然科学研究科		バイオサイエンス研究科
杉浦美羽	愛媛大学 プロテオサイエンスセンター	和田元	東京大学大学院総合文化研究科
杉田 護	名古屋大学遺伝子実験施設		
杉山達夫	名古屋大学	*平成 26 年より親	所幹事
鈴木祥弘	神奈川大学理学部		

編集後記

前任者の野口航さんから引き継ぎ、今号から編集長を務めることになりました。どうぞよろしくお 願いいたします。昨今、日本語で書かれた科学専門誌が次々に姿を消していく中、「光合成研究」は 貴重な国内雑誌になりました。光合成は、生物学だけではなく化学、物理学にまたがる異分野横断型 の学問ですので、日本語で書かれたわかりやすい解説や研究紹介は、学生や若手研究者だけではなく、 中堅・シニア層の研究者にとっても非常に価値のあるものだと思います。この雑誌をさらに素晴らし いものにするため鋭意努力する所存でおります。

さて、今号は、2014年5月30日~31日に近畿大学農学部で開催された第5回日本光合成学会・公開シンポジウム「光合成の多様な世界について」でご講演していただいた方々、ポスター発表賞を受賞された方々、また笠島一郎さんに執筆していただきました。力作が多く、光合成研究の醍醐味が直に伝わってくるように思いましたが、いかがでしたでしょうか。今号に関するご意見や本誌に対するご要望がございましたら、ぜひ私までご連絡ください。

また、研究紹介や解説を随時受け付けておりますので、奮ってご投稿ください。表紙に適した写真 もよろしくお願いします。

編集長·西山 佳孝(埼玉大学)

記事募集

日本光合成学会では、会誌に掲載する記事を会員の皆様より募集しています。募集する記事の項目は以下の通りです。

○ トピックス:光合成及び関連分野での纏まりのよいトピックス的な記事。

○ 解説:光合成に関連するテーマでの解説記事。

○研究紹介:最近の研究結果の紹介。特に、若手、博士研究員の方からの投稿を期待しています。

○ 集会案内:研究会、セミナー等の案内。

O 求人:博士研究員、専門技術員等の募集記事。

○ 新刊図書:光合成関係、または会員が執筆・編集した新刊図書の紹介。書評も歓迎します。

記事の掲載を希望される方は、会誌編集長の西山佳孝(nishiyama@molbiol.saitama-u.ac.jp)まで ご連絡ください。 光合成研究 25(1)2015

「光合成研究」編集委員会

編集長	西山	佳孝(均	奇玉大学)
編集委員	田中	亮一(化海道大学)
編集委員	伊福	健太郎	(京都大学)
編集委員	粟井	光一郎	(静岡大学)

日本光合成学会 2015年度役員

会長	高橋	裕一郎 (岡山大学)	
事務局長	鹿内	利治(京都大学)	
常任幹事	田中	歩(北海道大学)	前会長
常任幹事	池内	昌彦(東京大学)	
常任幹事	野口	航 (東京大学)	前編集長
常任幹事	西山	佳孝(埼玉大学)	編集長
常任幹事	園池	公毅(早稲田大学)	
常任幹事	久堀	徹(東京工業大学)	涉外
常任幹事	皆川	純(基礎生物学研究所)	
常任幹事	日原	由香子(埼玉大学)	年会 2013年
常任幹事	熊崎	茂一 (京都大学)	年会 2014年
常任幹事	柏山	佑一郎 (福井工業大学)	
常任幹事	杉浦	美羽(愛媛大学)	
常任幹事	松田	祐介(関西学院大学)	年会 2015年
常任幹事	鞆 達	也(東京理科大学)	光生物学協会

会計監査 伊藤 繁(名古屋大学)

ホームページ 加藤 裕介 (岡山大学)

光合成研究 第 25 巻 第 1 号 (通巻 72 号) 2015 年 4 月 30 日発行

日本光合成学会

〒700-8530 岡山県岡山市北区津島中 3-1-1
岡山大学 理学部生物学科
高橋裕一郎研究室内
TEL:086-251-7861
FAX:086-251-7876
e-mail:jspr@photosyn.jp
ホームページ:http://photosyn.jp/
郵便振替口座 加入者名:日本光合成学会 口座番号:00140-3-730290
銀行振込の場合 ゆうちょ銀行、019店(ゼロイチキュウと入力)、当座、0730290
名前:ニホンコウゴウセイガッカイ